Root Package¶
- class +tc_toolbox.AbstractCalculation(back)¶
- Abstract base class for calculations. - AbstractCalculation(back)¶
- Constructs an instance of - AbstractCalculation.
 - get_configuration_as_string()¶
- Returns detailed information about the current state of the calculation object. - Warning - The structure of the calculator objects is an implementation detail and might change between releases without notice. Therefore do not rely on the internal object structure. 
 - get_system_data()¶
- Returns the content of the database for the currently loaded system. This can be used to modify the parameters and functions and to change the current system by using - with_system_modifications().- Note - Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file. - Returns
- The system data 
 
 - invalidate()¶
- Invalidates the object and frees the disk space used by it. This is only required if the disk space occupied by the object needs to be released during the calculation. No data can be retrieved from the object afterwards. 
 - with_system_modifications(system_modifications)¶
- Updates the system of this calculator with the supplied system modification (containing new phase parameters and system functions). - Note - This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as a - *.tdb-file.- Parameters
- system_modifications – The system modification to be performed 
 
 
- class +tc_toolbox.AbstractResult(back)¶
- Abstract base class for results. This can be used to query for specific values . - AbstractResult(back)¶
- Constructs an instance of - AbstractResult.
 - invalidate()¶
- Invalidates the object and frees the disk space used by it. This is only required if the disk space occupied by the object needs to be released during the calculation. No data can be retrieved from the object afterwards. 
 
- class +tc_toolbox.CompositionType¶
- The type of composition. 
- class +tc_toolbox.CompositionUnit¶
- The composition unit. 
- class +tc_toolbox.Constants¶
- ALL_COMPONENTS = '"*"'¶
 - ALL_PHASES = '"*"'¶
 - CURRENT_TEMPERATURE = '-1.0'¶
 - MATERIAL_B_FRACTION = '"material_b_fraction"'¶
 - SER = '"SER"'¶
 
- class +tc_toolbox.ConversionUnit¶
- The composition unit used in a conversion. 
- class +tc_toolbox.DiffusionQuantity¶
- Factory class providing quantities used for defining diffusion simulations and their results. - Note - In this factory class only the most common quantities are defined, you can always use the Console Mode syntax strings in the respective methods as an alternative (for example: “NPM(*)”). - static activity_of_component(component, use_ser)¶
- Creates a quantity representing the activity of a component. - Parameters
- component – The name of the component, use ALL_COMPONENTS to choose all components 
- use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is be used if this setting is set to False. 
 
- Returns
- A new - ActivityOfComponentobject.
 
 - static chemical_diffusion_coefficient(phase, diffusing_element, gradient_element, reference_element)¶
- Creates a quantity representing the chemical diffusion coefficient of a phase [m^2/s]. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
- gradient_element – The gradient element 
- reference_element – The reference element (for example “Fe” in a steel) 
 
- Returns
- A new - ChemicalDiffusionCoefficientobject.
 
 - static chemical_potential_of_component(component, use_ser)¶
- Creates a quantity representing the chemical potential of a component [J]. - Parameters
- component – The name of the component, use ALL_COMPONENTS to choose all components 
- use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is used if this setting is set to False. 
 
- Returns
- A new - ChemicalPotentialOfComponentobject.
 
 - static distance(region)¶
- Creates a quantity representing the distance [m]. - Parameters
- region – The name of the region or All to choose global. 
 
 - static intrinsic_diffusion_coefficient(phase, diffusing_element, gradient_element, reference_element)¶
- Creates a quantity representing the intrinsic diffusion coefficient of a phase [m^2/s]. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
- gradient_element – The gradient element 
- reference_element – The reference element (for example “Fe” in a steel) 
 
- Returns
- A new - IntrinsicDiffusionCoefficientobject.
 
 - static l_bis(phase, diffusing_element, gradient_element, reference_element)¶
- Creates a quantity representing L’’ of a phase [m^2/s]. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
- gradient_element – The gradient element 
- reference_element – The reference element (for example “Fe” in a steel) 
 
- Returns
- A new - Lbisobject.
 
 - static mass_fraction_of_a_component(component)¶
- Creates a quantity representing the mass fraction of a component. - Parameters
- component – The name of the component or ALL_COMPONENTS to choose all components 
- Returns
- A new - MassFractionOfAComponentobject.
 
 - static mass_fraction_of_a_phase(phase)¶
- Creates a quantity representing the mass fraction of a phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases. 
- Returns
- A new - MassFractionOfAPhaseobject.
 
 - static mobility_of_component_in_phase(phase, component)¶
- Creates a quantity representing the mobility of a component in a phase [m^2/Js]. - Parameters
- phase – The name of the phase 
- component – The name of the component 
 
- Returns
- A new - MobilityOfComponentInPhaseobject.
 
 - static mole_fraction_of_a_component(component)¶
- Creates a quantity representing the mole fraction of a component. - Parameters
- component – The name of the component or ALL_COMPONENTS to choose all components 
- Returns
- A new - MoleFractionOfAComponentobject.
 
 - static mole_fraction_of_a_phase(phase)¶
- Creates a quantity representing the mole fraction of a phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- Returns
- A new - MoleFractionOfAPhaseobject.
 
 - static position_of_lower_boundary_of_region(region)¶
- Creates a quantity representing the position of lower boundary of a region [m]. - Parameters
- region – The name of the region 
- Returns
- A new - PositionOfLowerBoundaryOfRegionobject.
 
 - static position_of_upper_boundary_of_region(region)¶
- Creates a quantity representing the position of upper boundary of a region [m]. - Parameters
- region – The name of the region 
- Returns
- A new - PositionOfUpperBoundaryOfRegionobject.
 
 - static temperature()¶
- Creates a quantity representing the temperature [K]. - Returns
- A new - Temperatureobject.
 
 - static thermodynamic_factor(phase, diffusing_element, gradient_element, reference_element)¶
- Creates a quantity representing thermodynamic factor of a phase. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
- gradient_element – The gradient element 
- reference_element – The reference element (for example “Fe” in a steel) 
 
- Returns
- A new - ThermoDynamicFactorobject.
 
 - static time()¶
- Creates a quantity representing the time [s]. 
 - static total_mass_fraction_of_component(component)¶
- Creates a quantity representing the total mass fraction of a component. - Parameters
- component – The name of the component 
- Returns
- A new - TotalMassFractionOfComponentobject.
 
 - static total_mass_fraction_of_component_in_phase(phase, component)¶
- Creates a quantity representing the total mass fraction of a component in a phase. - Parameters
- phase – The name of the phase 
- component – The name of the component 
 
- Returns
- A new - TotalMassFractionOfComponentInPhaseobject.
 
 - static total_mass_fraction_of_phase(phase)¶
- Creates a quantity representing the total mass fraction of a phase. - Parameters
- phase – The name of the phase. 
- Returns
- A new - TotalMassFractionOfPhaseobject.
 
 - static total_mole_fraction_of_component(component)¶
- Creates a quantity representing the total mole fraction of a component. - Parameters
- component – The name of the component 
- Returns
- A new - TotalMoleFractionOfComponentobject.
 
 - static total_mole_fraction_of_component_in_phase(phase, component)¶
- Creates a quantity representing the total mole fraction of a component in a phase. - Parameters
- phase – The name of the phase 
- component – The name of the component 
 
- Returns
- A new - TotalMoleFractionOfComponentInPhaseobject.
 
 - static total_volume_fraction_of_phase(phase)¶
- Creates a quantity representing the total volume fraction of a phase. - Parameters
- phase – The name of the phase. 
- Returns
- A new - TotalVolumeFractionOfPhaseobject.
 
 - static tracer_diffusion_coefficient(phase, diffusing_element)¶
- Creates a quantity representing tracer diffusion coefficient of a phase [m^2/s]. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
 
- Returns
- A new - TracerDiffusionCoefficientobject.
 
 - static u_fraction_of_a_component(component)¶
- Creates a quantity representing the u-fraction of a component. - Parameters
- component – The name of the component 
- Returns
- A new - UFractionOfAComponentobject.
 
 - static user_defined_function(expression)¶
- Creates a quantity representing a user-defined function. - Parameters
- expression – The function expression 
- Returns
- A new - Functionobject
 
 - static velocity_of_lower_boundary_of_region(region)¶
- Creates a quantity representing the velocity of lower boundary of a region [m/s]. - Parameters
- region – The name of the region 
- Returns
- A new - VelocityOfLowerBoundaryOfRegionobject.
 
 - static velocity_of_upper_boundary_of_region(region)¶
- Creates a quantity representing the velocity of upper boundary of a region [m/s]. - Parameters
- region – The name of the region 
- Returns
- A new - VelocityOfUpperBoundaryOfRegionobject.
 
 - static width_of_region(region)¶
- Creates a quantity representing the width of a region [m]. - Parameters
- region – The name of the region 
- Returns
- A new - WidthOfRegionobject.
 
 
- class +tc_toolbox.GasAmountUnit¶
- The amount of a gas. 
- class +tc_toolbox.GasCompositionUnit¶
- The composition unit for a gas. 
- class +tc_toolbox.GasRateUnit¶
- The rate of a gas flow. 
- class +tc_toolbox.IndependentVariable¶
- Factory class providing quantities used for defining the independent variable in general diffusion result querying. - static distance(region)¶
- Creates an independent variable representing the distance [m]. - Returns
- A new Distance object 
 
 - static time()¶
- Creates an independent variable representing the time [s]. - Returns
- A new Time object 
 
 
- class +tc_toolbox.InterfacePosition¶
- The position of an interface relative to its region. Only used for diffusion simulations. 
- class +tc_toolbox.MetallurgyCalculations(back)¶
- Provides access to the calculation objects for all Process Metallurgy calculations. - These are specialised calculations for working with metallurgical processes. Both equilibrium calculations and kinetic process simulations (Effective Equilibrium Reaction Zone model) are available. - MetallurgyCalculations(back)¶
- Constructs an instance of - MetallurgyCalculations.
 - with_adiabatic_equilibrium_calculation(database)¶
- Creates an adiabatic equilibrium calculation for Process Metallurgy. - Parameters
- database – The thermodynamic database used in the calculation 
- Returns
- A new - AdiabaticEquilibriumCalculationobject
 
 - with_adiabatic_process_calculation(database)¶
- Creates an adiabatic kinetic process simulation (EERZ, i.e. Effective Equilibrium Reaction Zone model). - Parameters
- database – The thermodynamic database used in the calculation 
- Returns
- A new - ProcessSimulationCalculationobject
 
 - with_isothermal_equilibrium_calculation(database)¶
- Creates an isothermal equilibrium calculation for Process Metallurgy. - Parameters
- database – The thermodynamic database used in the calculation 
- Returns
- A new - IsoThermalEquilibriumCalculationobject
 
 
- class +tc_toolbox.PhaseParameter(parameter_name)¶
- Database phase parameter expression used by - SystemModifications.set().- Parameters
- parameter_name – The phase parameter name 
 - PhaseParameter(parameter_name)¶
- Constructs an instance of - PhaseParameter.
 - get_intervals()¶
- Returns the list of all defined intervals. - Returns
- The defined temperature intervals 
 
 - get_lower_temperature_limit()¶
- Returns the lower temperature limit. - Returns
- The lower temperature limit in K 
 
 - get_name()¶
- Returns the name of the phase parameter. - Returns
- The name of the phase parameter. 
 
 - remove_all_intervals()¶
- Removes all previously defined temperature intervals. - Returns
- This - PhaseParameterobject
 
 - remove_interval_with_upper_limit(upper_temperature_limit)¶
- Removes a previously defined temperature interval with matching upper temperature limit. - If no such interval exists, an exception is thrown. - Returns
- This - PhaseParameterobject
 
 - set_expression_with_upper_limit(parameter_expression, upper_temperature_limit)¶
- Adds/overwrites a parameter expression for a temperature interval. - Default value of the upper limit of the interval: 6000 K - Note - The lower temperature limit is either defined by the lower temperature limit given with - PhaseParameter.set_lower_temperature_limit()or by the upper temperature limit of the adjacent interval.- Note - If there is an existing interval with exactly the same upper_temperature_limit, that interval is overwritten, otherwise the interval is added. - Parameters
- parameter_expression – The parameter expression, example: +V34*T*LN(T)+V35*T**2+V36*T**(-1)+V37*T**3”) 
- upper_temperature_limit – The upper temperature limit for which the expression should be used 
 
- Returns
- This - PhaseParameterobject
 
 - set_interval(interval)¶
- Adds/overwrites a temperature interval. - Note - The lower temperature limit is either defined by the lower temperature limit given with - PhaseParameter.set_lower_temperature_limit()or by the upper temperature limit of the adjacent interval.- Note - If there is an existing interval with exactly the same upper_temperature_limit, that interval is overwritten, otherwise the interval is added. - Returns
- This - PhaseParameterobject
 
 - set_lower_temperature_limit(lower_temperature_limit)¶
- Sets the lower temperature limit of the phase parameter. - Default: 298.15 K - Parameters
- lower_temperature_limit – The lower temperature limit in K 
- Returns
- This - PhaseParameterobject
 
 
- class +tc_toolbox.PhaseUnit¶
- The units available for a phase fraction. 
- class +tc_toolbox.PlotCondition¶
- Factory class providing quantities used for defining the plot condition in general diffusion result querying. - Note - In this factory class only the most common quantities are defined, you can always use the Console Mode syntax strings in the respective methods as an alternative (for example: “time last”). - static distance(distancepoint, region)¶
- Creates a plot condition representing the distance [m]. - Change in version 2019b: Mandatory parameter distancepoint added - Parameters
- distancepoint – The distance from the lower interface of the region 
- region – The name of the region or All to choose global. 
 
- Returns
- A new DistanceCondition object 
 
 - static integral()¶
- Creates an integral plot condition. - Returns
- A new IntegralCondition object 
 
 - static interface(region, interface_position)¶
- Creates a plot condition representing an interface between two regions. - Parameters
- region – The name of the region used for defining the interface 
- interface_position – The position of the interface relative to that region (lower or upper) 
 
- Returns
- A new InterfaceCondition object 
 
 - static time(timepoint)¶
- Creates a plot condition representing the time [s]. - Change in version 2019b: Lists of timepoints are no longer supported - Parameters
- timepoint – The timepoint. Optionally “Last” can be used for the end of the simulation 
- Returns
- A new TimeCondition object 
 
 
- class +tc_toolbox.ResultLoader(back)¶
- Contains methods for loading results from previously done calculations. - ResultLoader(back)¶
- Constructs an instance of - ResultLoader.
 - diffusion(path)¶
- Loads a - DiffusionCalculationResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - DiffusionCalculationResultobject which later can be used to get specific values from the calculated result
 
 - phase_diagram(path)¶
- Loads a - PhaseDiagramResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - PhaseDiagramResultobject which later can be used to get specific values from the calculated result
 
 - precipitation_TTT_or_CCT(path)¶
- Loads a - PrecipitationCalculationTTTorCCTResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - PrecipitationCalculationTTTorCCTResultobject which later can be used to get specific values from the calculated result
 
 - precipitation_single(path)¶
- Loads a - PrecipitationCalculationSingleResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - PrecipitationCalculationSingleResultobject which later can be used to get specific values from the calculated result
 
 - property_diagram(path)¶
- Loads a - PropertyDiagramResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - PropertyDiagramResultobject which later can be used to get specific values from the calculated result
 
 - property_model(path)¶
- Loads a - PropertyModelResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - PropertyModelResultobject which later can be used to get specific values from the calculated result
 
 - scheil(path)¶
- Loads a - ScheilCalculationResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - ScheilCalculationResultobject which later can be used to get specific values from the calculated result
 
 - single_equilibrium(path)¶
- Loads a - SingleEquilibriumResultfrom disc.- Parameters
- path – path to the folder where result was previously saved. 
- Returns
- A new - SingleEquilibriumResultobject which later can be used to get specific values from the calculated result
 
 
- class +tc_toolbox.ResultValueGroup(back)¶
- A x-y-dataset representing a line data calculation result (i.e. a Thermo-Calc quantity 1 vs. quantity 2). - Warning - Depending on the calculator, the dataset might contain NaN-values to separate the data between different subsets. - Returns
- list of floats representing the second quantity (“y-axis”) 
 - ResultValueGroup(back)¶
- Constructs an instance of - ResultValueGroup.
 - get_label()¶
- Accessor for the line label :return the line label 
 - get_x()¶
- Accessor for the x-values :return the x values 
 - get_y()¶
- Accessor for the y-values :return the y values 
 
- class +tc_toolbox.ScheilQuantity¶
- Factory class providing quantities used for defining a Scheil calculation result ( - +tc_toolbox.scheil.ScheilCalculationResult).- static apparent_heat_capacity_per_gram()¶
- Creates a quantity representing the apparent heat capacity [J/g/K]. - Returns
- A new - ApparentHeatCapacityPerGramobject.
 
 - static apparent_heat_capacity_per_mole()¶
- Creates a quantity representing the apparent heat capacity [J/mol/K]. - Returns
- A new - ApparentHeatCapacityPerMoleobject.
 
 - static apparent_volumetric_thermal_expansion_coefficient()¶
- Creates a quantity representing the apparent volumetric thermal expansion coefficient of the system [1/K]. - Returns
- A new - ApparentVolumetricThermalExpansionCoefficientobject.
 
 - static composition_of_phase_as_mole_fraction(phase, component)¶
- Creates a quantity representing the composition of a phase [mole-fraction]. - Parameters
- phase – The name of the phase, use ALL_PHASES to choose all stable phases 
- component – The name of the component, use ALL_COMPONENTS to choose all components 
 
- Returns
- A new - CompositionOfPhaseAsMoleFractionobject.
 
 - static composition_of_phase_as_weight_fraction(phase, component)¶
- Creates a quantity representing the composition of a phase [weight-fraction]. - Parameters
- phase – The name of the phase, use ALL_PHASES to choose all stable phases 
- component – The name of the component, use ALL_COMPONENTS to choose all components 
 
- Returns
- A new - CompositionOfPhaseAsWeightFractionobject.
 
 - static density_of_phase(phase)¶
- Creates a quantity representing the average density of a phase [g/cm^3]. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- Returns
- A new - DensityOfPhaseobject.
 
 - static density_of_system()¶
- Creates a quantity representing the average density of the system [g/cm^3]. - Returns
- A new - DensityOfSystemobject.
 
 - static distribution_of_component_of_phase(phase, component)¶
- Creates a quantity representing the (molar) fraction of the specified component being present in the specified phase compared to the overall system [-]. This corresponds to the degree of segregation to that phase. - Parameters
- phase – The name of the phase 
- component – The name of the component 
 
- Returns
- A new - DistributionOfComponentOfPhaseobject.
 
 - static heat_per_gram()¶
- Creates a quantity representing the total heat release from the liquidus temperature down to the current temperature [J/g]. - Note - The total or apparent heat release during the solidification process consists of two parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation ( - latent_heat_per_mole()and- latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid phases (- heat_per_mole()and- heat_per_gram()).- Returns
- A new - HeatPerGramobject.
 
 - static heat_per_mole()¶
- Creates a quantity representing the total heat release from the liquidus temperature down to the current temperature [J/mol]. - Note - The total or apparent heat release during the solidification process consists of two parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation ( - latent_heat_per_mole()and- latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid phases (- heat_per_mole()and- heat_per_gram()).- Returns
- A new - HeatPerMoleobject.
 
 - static latent_heat_per_gram()¶
- Creates a quantity representing the cumulated latent heat release from the liquidus temperature down to the current temperature [J/g]. - Note - The total or apparent heat release during the solidification process consists of two parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation ( - latent_heat_per_mole()and- latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid phases (- heat_per_mole()and- heat_per_gram()).- Returns
- A new - LatentHeatPerGramobject.
 
 - static latent_heat_per_mole()¶
- Creates a quantity representing the cumulated latent heat release from the liquidus temperature down to the current temperature [J/mol]. - Note - The total or apparent heat release during the solidification process consists of two parts: one is the so-called latent heat, i.e. heat due to the liquid -> solid phase transformation ( - latent_heat_per_mole()and- latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid phases (- heat_per_mole()and- heat_per_gram()).- Returns
- A new - LatentHeatPerMoleobject.
 
 - static mass_fraction_of_a_solid_phase(phase)¶
- Creates a quantity representing the mass fraction of a solid phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all solid phases 
- Returns
- A new - MassFractionOfASolidPhaseobject.
 
 - static mass_fraction_of_all_liquid()¶
- Creates a quantity representing the total mass fraction of all the liquid phase. - Returns
- A new - MassFractionOfAllLiquidobject.
 
 - static mass_fraction_of_all_solid_phases()¶
- Creates a quantity representing the total mass fraction of all solid phases. - Returns
- A new - MassFractionOfAllSolidPhaseobject.
 
 - static molar_volume_of_phase(phase)¶
- Creates a quantity representing the molar volume of a phase [m^3/mol]. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- Returns
- A new - MolarVolumeOfPhaseobject.
 
 - static molar_volume_of_system()¶
- Creates a quantity representing the molar volume of the system [m^3/mol]. - Returns
- A new - MolarVolumeOfSystemobject.
 
 - static mole_fraction_of_a_solid_phase(phase)¶
- Creates a quantity representing the molar fraction of a solid phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all solid phases 
- Returns
- A new - MoleFractionOfASolidPhaseobject.
 
 - static mole_fraction_of_all_liquid()¶
- Creates a quantity representing the total molar fraction of all the liquid phase. - Returns
- A new - MoleFractionOfAllLiquidobject.
 
 - static mole_fraction_of_all_solid_phases()¶
- Creates a quantity representing the total molar fraction of all solid phases. - Returns
- A new - MoleFractionOfAllSolidPhasesobject.
 
 - static site_fraction_of_component_in_phase(phase, component, sub_lattice_ordinal_no)¶
- Creates a quantity representing the site fractions [-]. - Note - Detailed information about the sublattices can be obtained by getting the Phase object of a phase from the System object using - +tc_toolbox.system.System.get_phase_in_system. For each phase the sublattices are obtained by using- +tc_toolbox.system.Phase.get_sublattices. The order in the returned list is equivalent to the sublattice ordinal number expected, but note that the ordinal numbers start with 1.- Parameters
- phase – The name of the phase, use ALL_PHASES to choose all stable phases 
- component – The name of the component, use ALL_COMPONENTS to choose all components 
- sub_lattice_ordinal_no – The ordinal number (i.e. 1, 2, …) of the sublattice of interest, use None to choose all sublattices 
 
- Returns
- A new - SiteFractionOfComponentInPhaseobject.
 
 - static temperature()¶
- Creates a quantity representing the temperature [K]. - Returns
- A new - Temperatureobject.
 
 
- class +tc_toolbox.SystemData(back)¶
- Provides information about the parameters and functions of a user database. The obtained objects can be used to modify the database using - with_system_modifications()of all calculators.- Note - Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file. - SystemData(back)¶
- Constructs an instance of - SystemData.
 - get_phase_parameter(parameter)¶
- Returns a phase parameter. - Example: - system_data.get_phase_parameter(‘G(HCP_A3,FE:VA;0)’) - Note - Parameters can only be read from unencrypted (i.e. user) databases loaded as a - *.tdb-file.- Note - For details about the syntax search the Thermo-Calc help for GES (the name for the Gibbs Energy System module in Console Mode). - Parameters
- parameter – The name of the phase parameter (for example: “G(LIQUID,FE;0)”) 
- Returns
- The phase parameter 
 
 - get_phase_parameter_names()¶
- Returns all phase parameters present in the current system. - Returns
- The list of phase parameters 
 
 - get_system_function(f)¶
- Returns a system function. - Example: - system_data.get_system_function(‘GHSERCR’) - Note - The parameter ‘f’ was previously called ‘function’ but was renamed. - Note - Functions can only be read from unencrypted (i.e. user) databases loaded as a - *.tdb-file.- Note - For details about the syntax search the Thermo-Calc help for GES (the name for the Gibbs Energy System module in Console Mode). - Parameters
- f – The name of the system function (for example: “GHSERCR”) 
- Returns
- The system function 
 
 - get_system_function_names()¶
- Returns all system functions present in the current system. - Returns
- The list of system functions 
 
 
- class +tc_toolbox.SystemFunction(function_name)¶
- Database function expression used by - SystemModifications.set().- Parameters
- function_name – The function name 
 - SystemFunction(function_name)¶
- Constructs an instance of - SystemFunction.
 - get_intervals()¶
- Returns the list of all defined intervals. - Returns
- The defined temperature intervals 
 
 - get_lower_temperature_limit()¶
- Returns the lower temperature limit. - Returns
- The lower temperature limit in K 
 
 - get_name()¶
- Returns the name of the system function. - Returns
- The name of the system function 
 
 - remove_all_intervals()¶
- Removes all previously defined temperature intervals. - Returns
- This - SystemFunctionobject
 
 - remove_interval_with_upper_limit(upper_temperature_limit)¶
- Removes a previously defined temperature interval with matching upper temperature limit. - If no such interval exists, an exception is thrown. - Returns
- This - SystemFunctionobject
 
 - set_expression_with_upper_limit(function_expression, upper_temperature_limit)¶
- Adds/overwrites a function expression for a temperature interval. - Default value of the upper limit of the interval: 6000 K - Note - The lower temperature limit is either defined by the lower temperature limit given with - SystemFunction.set_lower_temperature_limit()or by the upper temperature limit of the adjacent interval.- Note - If there is an existing interval with exactly the same upper_temperature_limit, that interval is overwritten, otherwise the interval is added. - Parameters
- function_expression – The function expression, example: +V34*T*LN(T)+V35*T**2+V36*T**(-1)+V37*T**3”) 
- upper_temperature_limit – The upper temperature limit for which the expression should be used 
 
- Returns
- This - SystemFunctionobject
 
 - set_interval(interval)¶
- Adds/overwrites a temperature interval. - Note - The lower temperature limit is either defined by the lower temperature limit given with - SystemFunction.set_lower_temperature_limit()or by the upper temperature limit of the adjacent interval.- Note - If there is an existing interval with exactly the same upper_temperature_limit, that interval is overwritten, otherwise the interval is added. - Returns
- This - SystemFunctionobject
 
 - set_lower_temperature_limit(lower_temperature_limit)¶
- Sets the lower temperature limit of the system function. - Default: 298.15 K - Parameters
- lower_temperature_limit – The lower limit in K 
- Returns
- This - SystemFunctionobject
 
 
- class +tc_toolbox.SystemModifications¶
- Functionality to modify a user database during a calculation by changing phase parameters and system functions. - The actual changes are only applied by using - +tc_toolbox.abstract_base.AbstractCalculation.with_system_modifications()on a calculator object.- SystemModifications()¶
- Constructs an instance of - SystemModifications.
 - run_ges_command(ges_command)¶
- Sends a GES-command. This is actually applied when running `with_system_modifications` on a calculator object. - Example: run_ges_command(“AM-PH-DE FCC_A1 C_S 2 Fe:C”) for adding a second composition set to the FCC_A1 phase with Fe as major constituent on first sublattice and C as major constituent on second sublattice. - Note - For details about the syntax search the Thermo-Calc help for GES (the name for the Gibbs Energy System module in Console Mode). - Note - It should not be necessary for most users to use this method, try to use the corresponding method implemented in the API instead. - Warning - As this method runs raw GES-commands directly in the engine, it may hang the program in case of spelling mistakes (e.g. forgotten parenthesis, …). - Parameters
- ges_command – The GES-command (for example: “AM-PH-DE FCC_A1 C_S 2 Fe:C”) 
- Returns
- This - SystemModificationsobject
 
 
- class +tc_toolbox.TCToolbox¶
- TCToolbox Starting point for all calculations. This class exposes methods that have no precondition, it is used for choosing databases and elements. - TCToolbox()¶
- TCToolbox Construct an instance of this class 
 - delete()¶
- TCToolbox Clears all resources used by the session Shuts down the API server and deletes all temporary files. The disk usage of temporary files might be significant. 
 - disable_caching()¶
- A previously set cache folder is no longer used. - Note - Within the session, caching is activated and used through the default temporary directory. - Returns
- This SetUp object 
 
 - get_database_info(database_short_name)¶
- Obtains the short information available for the specified database. - Parameters
- database_short_name – The name of the database (i.e. “FEDEMO”, …) 
- Returns
- The short information about the database 
 
 - get_database_path_on_disk(database_short_name)¶
- Obtains the path to the database file on disk. TCPATH is a placeholder for the root path of the used Thermo-Calc installation. - Note - Encrypted databases (*.TDC) cannot be edited. - Parameters
- database_short_name – The name of the database (i.e. “FEDEMO”, …) 
- Returns
- The path to the database on disk 
 
 - get_databases()¶
- Obtains the short names of all databases available in the used Thermo-Calc installation. - Note - Only databases with a valid license are listed. - Returns
- List of the available databases 
 
 - get_property_models(path_to_models)¶
- Lists the names of all Property Models in the specified directory. - If the directory is not specified, the Property Model folder used by the normal Thermo-Calc application is used. - Parameters
- path_to_models – The path where the Property Models are installed. If no value is entered, the Property Model folder used by the normal Thermo-Calc application is used. 
- Returns
- Set containing all Property Model names 
 
 - load_result_from_disk()¶
- Loads a previously calculated result from disk. - Note - This only works for results created by calling one of the - save_result()methods on a Result class created from a calculation.- Returns
- A new - ResultLoaderobject
 
 - select_database_and_elements(database_name, list_of_elements)¶
- Selects a first thermodynamic or kinetic database and selects the elements in it. - Parameters
- database_name – The name of the database, for example “FEDEMO” 
- list_of_elements – The list of the selected elements in that database, for example [“Fe”, “C”] 
 
- Returns
- A new - SystemBuilderobject
 
 - select_thermodynamic_and_kinetic_databases_with_elements(thermodynamic_db_name, kinetic_db_name, list_of_elements)¶
- Selects the thermodynamic and kinetic database at once, guarantees that the databases are added in the correct order. Further rejection or selection of phases applies to both databases. - Parameters
- thermodynamic_db_name – The thermodynamic database name, for example “FEDEMO” 
- kinetic_db_name – The kinetic database name, for example “MFEDEMO” 
- list_of_elements – The list of the selected elements in that database, for example [“Fe”, “C”] 
 
- Returns
- A new - MultiDatabaseSystemBuilderobject
 
 - select_user_database_and_elements(path_to_user_database, list_of_elements)¶
- Selects a user-defined database and selects the elements in it. - Note - By using a r-literal, it is possible to use slashes on all platforms, also on Windows: select_user_database_and_elements(r”my path/user_db.tdb”, [“Fe”, “Cr”]]) - Note - On Linux and Mac the path is case-sensitive, also the file ending. - Parameters
- path_to_user_database – The path to the database file (“database”.TDB), defaults to the current working directory. Only filename is required if the database is located in the same folder as the script. 
- list_of_elements – The list of the selected elements in that database, for example [“Fe”, “C”] 
 
- Returns
- A new - SystemBuilderobject
 
 - set_cache_folder(path, precision_for_floats)¶
- Sets a folder where results from calculations and state of systems are saved. If at any time a calculation is run which has the exact same setting as a previous, the calculation is not re-run. The result is instead loaded from this folder. - Note - The same folder can be used in several scripts, and it can even be shared between different users. It can be a network folder. - Parameters
- path – path to the folder where results should be stored. It can be relative or absolute. 
- precision_for_floats – The number of significant figures used when comparing if the calculation has the same setting as a previous. 
 
- Returns
- This SetUp object 
 
 - set_ges_version(version)¶
- Setting the version of the Gibbs Energy System (GES). - Parameters
- version – The GES-version (currently version 5 or 6) 
- Returns
- This SetUp object 
 
 - set_log_level_to_debug()¶
- Sets log level to DEBUG - Returns
- This SetUp object 
 
 - set_log_level_to_info()¶
- Sets log level to INFO - Returns
- This SetUp object 
 
 - with_metallurgy()¶
- Provides access to the calculation objects for all Process Metallurgy calculations. - These are specialised calculations for working with metallurgical processes. Both equilibrium calculations and kinetic process simulations (Effective Equilibrium Reaction Zone model) are available. 
 
- class +tc_toolbox.TemperatureInterval(expression, upper_temperature_limit)¶
- Temperature interval expression used by the classes - SystemFunctionand- PhaseParameter.- Parameters
- expression – The temperature function expressed in Thermo-Calc database syntax. 
- upper_temperature_limit – The upper temperature limit in K 
 
 - TemperatureInterval(expression, upper_temperature_limit)¶
- Constructs an instance of - TemperatureInterval.
 - get_expression()¶
- Returns the function expression of this temperature interval. - Returns
- The temperature function expression 
 
 - get_upper_temperature_limit()¶
- Returns the upper limit of this temperature interval. - Returns
- The upper temperature limit in K 
 
 - set_expression(expression)¶
- Sets the function expression of this temperature interval. - Parameters
- expression – The temperature function expression 
 
 - set_upper_temperature_limit(upper_temperature_limit)¶
- Sets the upper limit of this temperature interval. - Parameters
- upper_temperature_limit – The upper temperature limit in K 
 
 
- class +tc_toolbox.TemperatureProfile¶
- Represents a time-temperature profile used by non-isothermal calculations. - Note - The total simulation time can differ from the defined temperature profile. Constant temperature is assumed for any timepoint after the end of the defined profile. - TemperatureProfile()¶
- Constructor. Constructs an instance of - TemperatureProfile.
 - add_time_temperature(time, temperature)¶
- Adds a time-temperature point to the non-isothermal temperature profile. - Parameters
- time – The time [s] 
- temperature – The temperature [K] 
 
- Returns
- This - TemperatureProfileobject
 
 
- class +tc_toolbox.ThermodynamicQuantity¶
- Factory class providing quantities used for defining equilibrium calculations (single equilibrium, property and phase diagrams, …) and their results. - Note - In this factory class only the most common quantities are defined, you can always use the Console Mode syntax strings in the respective methods as an alternative (for example: “NPM(*)”). - static activity_of_component(component, use_ser)¶
- Creates a quantity representing the activity of a component [-]. - Parameters
- component – The name of the component, use ALL_COMPONENTS to choose all components 
- use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is used if this setting is set to False. 
 
- Returns
- A new - ActivityOfComponentobject.
 
 - static chemical_diffusion_coefficient(phase, diffusing_element, gradient_element, reference_element)¶
- Creates a quantity representing the chemical diffusion coefficient of a phase [m^2/s]. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
- gradient_element – The gradient element 
- reference_element – The reference element (for example “Fe” in a steel) 
 
- Returns
- A new - ChemicalDiffusionCoefficientobject.
 
 - static chemical_potential_of_component(component, use_ser)¶
- Creates a quantity representing the chemical potential of a component [J]. - Parameters
- component – The name of the component, use ALL_COMPONENTS to choose all components 
- use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is used if this setting is set to False. 
 
- Returns
- A new - ChemicalPotentialOfComponentobject.
 
 - static composition_of_phase_as_mole_fraction(phase, component)¶
- Creates a quantity representing the composition of a phase [mole-fraction]. - Parameters
- phase – The name of the phase, use ALL_PHASES to choose all stable phases 
- component – The name of the component, use ALL_COMPONENTS to choose all components 
 
- Returns
- A new - CompositionOfPhaseAsMoleFractionobject.
 
 - static composition_of_phase_as_weight_fraction(phase, component)¶
- Creates a quantity representing the composition of a phase [weight-fraction]. - Parameters
- phase – The name of the phase, use ALL_PHASES to choose all stable phases 
- component – The name of the component, use ALL_COMPONENTS to choose all components 
 
- Returns
- A new - CompositionOfPhaseAsWeightFractionobject.
 
 - static gibbs_energy_of_a_phase(phase, use_ser)¶
- Creates a quantity representing the Gibbs energy of a phase [J]. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- use_ser – Use Stable-Element-Reference(SER). The user-defined reference state will be used when this setting is set to False. 
 
- Returns
- A new - GibbsEnergyOfAPhaseobject.
 
 - static mass_fraction_of_a_component(component)¶
- Creates a quantity representing the mass fraction of a component. - Parameters
- component – The name of the component or ALL_COMPONENTS to choose all components 
- Returns
- A new - MassFractionOfAComponentobject.
 
 - static mass_fraction_of_a_phase(phase)¶
- Creates a quantity representing the mass fraction of a phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases. 
- Returns
- A new - MassFractionOfAPhaseobject.
 
 - static mole_fraction_of_a_component(component)¶
- Creates a quantity representing the mole fraction of a component. - Parameters
- component – The name of the component or ALL_COMPONENTS to choose all components 
- Returns
- A new - MoleFractionOfAComponentobject.
 
 - static mole_fraction_of_a_phase(phase)¶
- Creates a quantity representing the mole fraction of a phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- Returns
- A new - MoleFractionOfAPhaseobject.
 
 - static normalized_driving_force_of_a_phase(phase)¶
- Creates a quantity representing normalized driving force of a phase [-]. - Warning - A driving force calculation requires that the respective phase has been set to the state DORMANT. The parameter All is only reasonable if all phases have been set to that state. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- Returns
- A new - DrivingForceOfAPhaseobject.
 
 - static pressure()¶
- Creates a quantity representing the pressure [Pa]. - Returns
- A new - Pressureobject.
 
 - static system_size()¶
- Creates a quantity representing the system size [mol]. - Returns
- A new - SystemSizeobject.
 
 - static temperature()¶
- Creates a quantity representing the temperature [K]. - Returns
- A new - Temperatureobject.
 
 - static tracer_diffusion_coefficient(phase, diffusing_element)¶
- Creates a quantity representing tracer diffusion coefficient of a phase [m^2/s]. - Parameters
- phase – The name of the phase 
- diffusing_element – The diffusing element 
 
- Returns
- A new - TracerDiffusionCoefficientobject.
 
 - static u_fraction_of_a_component(component)¶
- Creates a quantity representing the u-fraction of a component. - Parameters
- component – The name of the component 
- Returns
- A new - UFractionOfAComponentobject.
 
 - static user_defined_function(expression)¶
- Creates a quantity representing a user-defined function. - Parameters
- expression – The function expression 
- Returns
- A new - Functionobject
 
 - static volume_fraction_of_a_phase(phase)¶
- Creates a quantity representing the volume fraction of a phase. - Parameters
- phase – The name of the phase or ALL_PHASES to choose all phases 
- Returns
- A new - VolumeFractionOfAPhaseobject.