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CHAPTER

ONE

INSTALLATION GUIDE

This guide helps you to get a working TC-Python API installation.

There is a PDF guide included with your installation. In the Thermo-Calc menu, select Help → Manuals
Folder. Then double-click to open the Software Development Kits (SDKs) folder.

Note: A license is required to run TC-Python, you can read up details in Configuring License.

1.1 What type of installation should I choose?

There are two possibilities to install TC-Python:

1. Using the Python-interpreter bundled to Thermo-Calc: This interpreter has TC-Python preinstalled together
with some popular Python-packages. This is the recommended option for new users to TC-Python, but it is
limited to the preinstalled packages.

2. Installing TC-Python into the Python-interpreter of your choice: This is the recommended option for any more
advanced usage and provides full flexibility.

1.2 Using the Python-interpreter bundled to Thermo-Calc

Note: A Python-interpreter is bundled to Thermo-Calc beginning with version 2021a.

1.2.1 Limitations

The bundled Python 3 interpreter is containing the following major packages:

1
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Package
colour-science
matplotlib
numpy
scikit-learn
scipy
pandas
pyvista
TC-Python
tmm

Please contact the Thermo-Calc support if you think that further packages might be useful in future re-
leases.

Note: The following TC-Python examples are requiring additional packages that are not available in the
bundled Python-interpreter, they can therefore not be run:

• pyex_M_01_Input_from_file.py

• pyex_M_02_Output_to_file.py

Warning: The Python-interpreter bundled to Thermo-Calc is also used for running the property
models in Thermo-Calc. Any changes to the interpreter packages can therefore break Thermo-
Calc and should be avoided. If the installation gets broken, it can be fixed by reinstalling Thermo-Calc
after having removed it.

1.2.2 Step 1: Install an IDE (Integrated Development Environment)

Any editor can be used to write the Python code, but an IDE is recommended, e.g. PyCharm. These
instructions are based on the use of PyCharm.

Use of an IDE will give you access to code completion, which is of great help when you use the API as it
will give you the available methods on the objects you are working with.

1. Navigate to the PyCharm website: https://www.jetbrains.com/pycharm/download.

2. Click to choose your OS and then click Download. You can use the Community version of PyCharm.

3. Follow the instructions. It is recommended you keep all the defaults.

Note: For Mac installations, you also need to set some environment variables as described below in
Setting Environment Variables.

2 Chapter 1. Installation Guide
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1.2.3 Step 2: Configure PyCharm to use the bundled Python-interpreter

Open PyCharm and configure the interpreter:

1. Go the menu File→Settings.
2. Navigate in the tree to Project: YourProjectName and choose Project Interpreter.

3. Click on the settings symbol close to the Project Interpreter dropdown menu and choose Add.

4. Now choose System Interpreter and add the bundled Thermo-Calc Python 3 interpreter. It is located
in different places depending on the operating system:

Operating
system

Path to the bundled Python-interpreter

Windows C:\Program Files\Thermo-Calc\2025b\python\python.exe
Linux /home/UserName/Thermo-Calc/2025b/python/bin/python3
MacOS /Applications/Thermo-Calc-2025b.app/Contents/

Resources/python/bin/python3

5. Select your added interpreter and confirm.

1.2.4 Step 3: Run a TC-Python Example

Now you are ready to start working with TC-Python.

It is recommended that you open one or more of the included examples to both check that the installation
has worked and to start familiarizing yourself with the code.

1.2.4.1 Open the TC-Python Project in PyCharm

When you first open the TC-Python project and examples, it can take a few moments for the Pycharm IDE
to index before some of the options are available.

1. Open PyCharm and then choose File→Open. The first time you open the project you will need to
navigate to the path of the TC-Python installation:

Operating sys-
tem

Path to the TC-Python folder

Windows C:\Users\UserName\Documents\Thermo-Calc\2025b\SDK\
TC-Python

Linux /home/UserName/Thermo-Calc/2025b/SDK/TC-Python
MacOS /Users/Shared/Thermo-Calc/2025b/SDK/TC-Python

2. Click on the Examples folder and then click OK.

3. From any subfolder:

• Double-click to open an example file to examine the code.

• Right-click an example and choose Run .

Note: If you are not following the recommended approach and create a new project (File→New
Project. . . ), you need to consider that by default the options to choose the interpreter are hidden within the

1.2. Using the Python-interpreter bundled to Thermo-Calc 3
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Create Project window. So click on Project Interpreter: New Virtual Environment and in most cases
choose your System Interpreter containing the Python bundled to Thermo-Calc instead of the default New
Virtual Environment.

1.3 Installing TC-Python into the Python-interpreter of your choice

1.3.1 Step 1: Install a Python Distribution

If you already have a Python distribution installation, version 3.8 or higher, skip this step.

These instructions are based on using the Anaconda platform for the Python distribution. Install version
3.8 or higher to be able to work with TC-Python, although it is recommended that you use the most recent
version.

Note: TC-Python requires Python 3.8 or newer.

1.3.1.1 Install Anaconda

1. Navigate to the Anaconda website: https://www.anaconda.com/download/.

2. Click to choose your OS (operating system) and then click Download. Follow the instructions. It is recommended
you keep all the defaults.

1.3.2 Step 2: Install Thermo-Calc and the TC-Python SDK

Note: TC-Python is available starting with Thermo-Calc version 2018a.

1. Install Thermo-Calc

2. When the installation is complete, open the TC-Python folder that includes the file:*.whl file needed
for the next step. There is also an file:Examples folder with Python files you can use in the IDE to
understand and work with TC-Python.

1.3.3 Step 3: Install TC-Python

On Windows, it is recommended that you use the Python distribution prompt (i.e. Anaconda, . . . ), espe-
cially if you have other Python installations. Do not use Virtual Environments unless you have a good
reason for that.

1. Open the command line. For example, in Anaconda on a Windows OS, go to
Start→Anaconda→Anaconda Prompt.

2. At the command line, enter the following. Make sure there are no spaces at the end of the string or
in the folder name or it will not run:

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-
↪→any.whl

4 Chapter 1. Installation Guide

https://www.anaconda.com/download/


TC-Python Documentation, Release 2025b

Tip: Note that on Linux depending on the interpreter usually pip3 is used.

Operating sys-
tem

Path to the TC-Python folder

Windows C:\Users\UserName\Documents\Thermo-Calc\2025b\SDK\
TC-Python

Linux /home/UserName/Thermo-Calc/2025b/SDK/TC-Python
MacOS /Users/Shared/Thermo-Calc/2025b/SDK/TC-Python

3. Press <Enter>. When the process is completed, there is a confirmation that TC-Python is installed.

Note: If your computer is located behind a proxy-server, the default pip-command will fail with a network
connection error. In that case you need to install the dependencies of TC-Python in a special configuration:

pip install -proxy user:password@proxy_ip:port py4j jproperties

See “pip install” fails with “Failed to establish a new network connection” or similar for detailed infor-
mation.

1.3.4 Step 4: Install an IDE (Integrated Development Environment)

Any editor can be used to write the Python code, but an IDE is recommended, e.g. PyCharm. These
instructions are based on the use of PyCharm.

Use of an IDE will give you access to code completion, which is of great help when you use the API as it
will give you the available methods on the objects you are working with.

1. Navigate to the PyCharm website: https://www.jetbrains.com/pycharm/download.

2. Click to choose your OS and then click Download. You can use the Community version of PyCharm.

3. Follow the instructions. It is recommended you keep all the defaults.

Note: For Mac installations, you also need to set some environment variables as described below in
Setting Environment Variables.

1.3.5 Step 5: Open the IDE and Run a TC-Python Example

After you complete all the software installations, you are ready to open the IDE to start working with
TC-Python.

It is recommended that you open one or more of the included examples to both check that the installation
has worked and to start familiarizing yourself with the code.

1.3. Installing TC-Python into the Python-interpreter of your choice 5
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1.3.5.1 Open the TC-Python Project in PyCharm

When you first open the TC-Python project and examples, it can take a few moments for the Pycharm IDE
to index before some of the options are available.

1. Open PyCharm and then choose File→Open. The first time you open the project you will need to
navigate to the path of the TC-Python installation.

Operating sys-
tem

Path to the TC-Python folder

Windows C:\Users\UserName\Documents\Thermo-Calc\2025b\SDK\
TC-Python

Linux /home/UserName/Thermo-Calc/2025b/SDK/TC-Python
MacOS /Users/Shared/Thermo-Calc/2025b/SDK/TC-Python

2. Click on the Examples folder and then click OK.

3. From any subfolder:

• Double-click to open an example file to examine the code.

• Right-click an example and choose Run .

1.3.5.2 Fixing potential issues with the environment

In most cases you should run TC-Python within your global Python 3 interpreter and not use Virtual
Environments unless you have a good reason to do so. A common problem on first usage of TC-Python
is the error message “No module named tc_python”. You can resolve this and other problems with the
interpreter settings as follows:

1. Go the menu File→Settings.
2. Navigate in the tree to Project: YourProjectName and choose Project Interpreter.

3. Click on the settings symbol close to the Project Interpreter dropdown menu and choose Add.

4. Now choose System Interpreter and add your existing Python 3 interpreter.

5. Select your added interpreter and confirm.

Note: If you are not following the recommended approach and create a new project (File→New
Project. . . ), you need to consider that by default the options to choose the interpreter are hidden within
the Create Project window. So click on Project Interpreter: New Virtual Environment and in most
cases choose your System Interpreter instead of the default New Virtual Environment.

Note: If you really need to use a Virtual Environment, please consider the hints given in the Python
Virtual Environments chapter.

6 Chapter 1. Installation Guide
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1.4 Optional packages

Plotting results of Additive Manufacturing simulations requires the package pyvista. It is automatically
installed if using the option [am-plotting] during the installation:

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.
↪→whl[am-plotting]

The bundled interpreter contains pyvista by default.

1.5 Updating to a newer version

When updating to a newer version of Thermo-Calc, you need to also install the latest version of TC-
Python. This is not necessary if are using the bundled Python-interpreter that has it automatically installed.
It is not sufficient to run the installer of Thermo-Calc:

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.whl

Tip: Note that on Linux depending on the interpreter usually pip3 is used.

In case of problems you may wish to uninstall the previous version of TC-Python in advance:

pip uninstall TC-Python
pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.whl

However, that should normally not be required.

You can check the currently installed version of TC-Python by running:

pip show TC-Python

1.4. Optional packages 7
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CHAPTER

TWO

CONFIGURING LICENSE

TC-Python requires a license to run, you can obtain a license from the Thermo-Calc support support@thermocalc.com.

If you have no valid license, an exception will be thrown that states: NO LICENSE: No activated license for TC-Python.
Depending on the type of license, different steps are required to configure TC-Python to use it.

2.1 Environment variables

Some environment variables need to be set. On Windows this is normally done during the installation of Thermo-Calc,
but on Linux and macOS this needs to be performed for each used IDE or terminal. Details are described in the chapter
Setting Environment Variables.

2.2 License activation

Only required for licenses with user credentials.
You need to activate the TC-Python license once on your computer. This license differs from that for the Thermo-Calc
application and thus it is not sufficient to activate only the Thermo-Calc GUI.

The activation is done with the methods in the class tc_python.license.LicenseManager. Depending on the type
of license various methods are available, for example for online and offline activation.

It is recommended to simply run the example Miscellaneous/pyex_M_04_license.py to perform the activation
and deactivation. By default an online activation is performed, but you can choose another method by activating another
method among those being commented out at the end of the file.

Note: You need to deactivate the license if you want to use it on another computer.

9
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CHAPTER

THREE

SETTING ENVIRONMENT VARIABLES

In order to use TC-Python on macOS and Linux you need to set some environment variables.

TC25B_HOME=/Applications/Thermo-Calc-2025b.app/Contents/Resources

If you use a license server:

LSHOST=<name-of-the-license-server>

If you have a node-locked license:

LSHOST=NO-NET
LSERVRC=/Users/Shared/Thermo-Calc/lservrc

If you have a license based on user credentials:

TC_LICENSE_SPRING=y

If running in the terminal they can be set using export LSHOST=NO-NET, etc.

In PyCharm, you can add environment variables in the configurations.

Select Run→Edit Configurations to open the Run/Debug Configurations window. Choose Templates
and then Python. Enter the environment variable(s) by clicking the button to the right of the Environment
Variables text field. Now the environment variables(s) will be set for each new configuration by default.

Note: Existing configurations need to be removed and recreated to obtain the environment variables in
them.

The same way for configuring the environment variables can be used on other operating systems as if
necessary.

11
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CHAPTER

FOUR

ARCHITECTURE OVERVIEW

TC-Python contains classes of these types:

• TCPython – this is where you start with general settings.

• SystemBuilder and System – where you choose database and elements etc.

• Calculation – where you choose and configure the calculation.

• Result – where you get the results from a calculation you have run.

4.1 TCPython

This is the starting point for all TC-Python usage.

You can think of this as the start of a “wizard”.

You use it to select databases and elements. That will take you to the next step in the wizard, where you configure the
system.

Example:

from tc_python import *

with TCPython() as start:
start.select_database_and_elements(...
# e.t.c

# after with clause

# or like this
with TCPython():

SetUp().select_database_and_elements(...
# e.t.c

# after with clause

Tip: If you use TC-Python from Jupyter Lab / Notebook, you should use TC-Python slightly different to be able to
use multiple cells. See Using TC-Python within a Jupyter Notebook or the Python console for details.

Note: When your python script runs a row like this:

with TCPython() as start:

13



TC-Python Documentation, Release 2025b

a process running a calculation server starts. Your code, via TC-Python, uses socket communication to send and receive
messages to and from that server.

When your Python script has run as far as this row:

# after with clause

the calculation server automatically shuts down, and all temporary files are deleted. It is important to ensure that this
happens by structuring your Python code using a with() clause as in the above example.

Note: To re-use results from previous calculations, set a folder where TC-Python saves results, and looks for previous
results.

This is done with the function set_cache_folder().

from tc_python import *

with TCPython() as start:
start.set_cache_folder("cache")

This folder can be a network folder and shared by many users. If a previous TC-Python calculation has run with the
same cache_folder and EXACTLY the same system and calculation settings, the calculation is not re-run. Instead the
result is automatically loaded from disk.

It is also possible to explicitly save and load results.

from tc_python import *

with TCPython() as start:
#... diffusion calculation (could be any calculation type)
calculation_result.save_to_disk('path to folder')
#...
loaded_result = start.load_result_from_disk().diffusion('path to folder')

4.2 SystemBuilder and System

A SystemBuilder is returned when you have selected your database and elements in TCPython.

The SystemBuilder lets you further specify your system, for example the phases that should be part of your system.

Example:

from tc_python import *

with TCPython() as start:
start.select_database_and_elements("ALDEMO", ["Al", "Sc"])

# e.t.c

When all configuration is done, you call get_system() which returns an instance of a System class. The System
class is fixed and cannot be changed. If you later want to change the database, elements or something else, change the
SystemBuilder and call get_system() again, or create a new SystemBuilder and call get_system().

From the System you can create one or more calculations, which is the next step in the “wizard”.
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Note: You can use the same System object to create several calculations.

4.3 Calculation

The best way to see how a calculation can be used is in the TC-Python examples included with the Thermo-Calc
installation.

Some calculations have many settings. Default values are used where it is applicable, and are overridden if you specify
something different.

When you have configured your calculation you call calculate() to start the actual calculation. That returns a Result,
which is the next step.

4.3.1 Single equilibrium calculations

In single equilibrium calculations you need to specify the correct number of conditions, depending on how many
elements your System contains.

You do that by calling set_condition().

An important difference from other calculations is that single equilibrium calculations have two functions to get result
values.

The calculate() method, which gives a SingleEquilibriumTempResult, is used to get actual values. This result is
“temporary”, meaning that if you run other calculations or rerun the current one, the resulting object no longer gives
values corresponding to the first calculation.

This is different from how other calculations work. If you want a Result that you can use after running other calcula-
tions, you need to call calculate_with_state(), which returns a SingleEquilibriumResult.

Note: calculate() is the recommended function and works in almost all situations. Also it has much better perfor-
mance than calculate_with_state().

Example:

from tc_python import *

with TCPython() as start:
gibbs_energy = (

start.
select_database_and_elements("FEDEMO", ["Fe", "Cr", "C"]).
get_system().
with_single_equilibrium_calculation().

set_condition(ThermodynamicQuantity.temperature(), 2000.0).
set_condition(ThermodynamicQuantity.mole_fraction_of_a_component("Cr"),␣

↪→0.1).
set_condition(ThermodynamicQuantity.mole_fraction_of_a_component("C"), 0.

↪→01).
calculate().
get_value_of("G")

)
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4.3.2 Batch equilibrium calculations

Batch equilibrium calculations are used when you want to do many single equilibrium calculations and it is known
from the beginning which result values are required from the equilibrium. This is a vectorized type of calculation that
can reduce the overhead from Python and TC-Python similar to the approach used in numpy-functions for example.

Tip: The performance of batch equilibrium calculations can be significantly better than looping and using single
equilibrium calculations if the actual Thermo-Calc calculation is fast. There is little advantage if the Thermo-Calc
equilibrium calculations take a long time (typically for large systems and databases).

Example:

from tc_python import *

with TCPython() as start:
calculation = (

start
.set_cache_folder(os.path.basename(__file__) + "_cache")
.select_database_and_elements("NIDEMO", ["Ni", "Al", "Cr"])
.get_system()
.with_batch_equilibrium_calculation()
.set_condition("T", 800.1)
.set_condition("X(Al)", 1E-2)
.set_condition("X(Cr)", 1E-2)
.disable_global_minimization()

)

list_of_x_Al = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
list_of_x_Cr = [3, 5, 7, 9, 11, 13, 15]
lists_of_conditions = []
for x_Al in list_of_x_Al:

for x_Cr in list_of_x_Cr:
lists_of_conditions.append([

("X(Al)", x_Al / 100),
("X(Cr)", x_Cr / 100)])

calculation.set_conditions_for_equilibria(lists_of_conditions)

results = calculation.calculate(["BM", "VM"])

masses = results.get_values_of("BM")
volumes = results.get_values_of('VM')

print(masses)
print(volumes)
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4.3.3 Precipitation calculations

All that can be configured in the Precipitation Calculator in Graphical Mode can also be done here in this calculation.
However, you must at least enter a matrix phase, a precipitate phase, temperature, simulation time and compositions.

Example:

from tc_python import *

with TCPython() as start:
precipitation_curve = (

start.
select_thermodynamic_and_kinetic_databases_with_elements("ALDEMO", "MALDEMO",

↪→ ["Al", "Sc"]).
get_system().
with_isothermal_precipitation_calculation().

set_composition("Sc", 0.18).
set_temperature(623.15).
set_simulation_time(1e5).
with_matrix_phase(MatrixPhase("FCC_A1").

add_precipitate_phase(PrecipitatePhase("AL3SC"))).
calculate()

)

4.3.4 Scheil calculations

All Scheil calculations available in Graphical Mode or Console Mode can also be done here in this calculation. The
minimum you need to specify are the elements and compositions. Everything else is set to a default value.

Example:

from tc_python import *

with TCPython() as start:
temperature_vs_mole_fraction_of_solid = (

start.
select_database_and_elements("FEDEMO", ["Fe", "C"]).
get_system().
with_scheil_calculation().

set_composition("C", 0.3).
calculate().
get_values_of(ScheilQuantity.temperature(),

ScheilQuantity.mole_fraction_of_all_solid_phases())
)
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4.3.5 Property diagram calculations

For the property diagram (step) calculation, everything that you can configure in the Equilibrium Calculator when
choosing One axis in Graphical Mode can also be configured in this calculation. In Console Mode the property diagram
is created using the Step command. The minimum you need to specify are elements, conditions and the calculation
axis. Everything else is set to default values, if you do not specify otherwise.

Example:

from tc_python import *

with TCPython() as start:
property_diagram = (

start.
select_database_and_elements("FEDEMO", ["Fe", "C"]).
get_system().
with_property_diagram_calculation().

with_axis(CalculationAxis(ThermodynamicQuantity.temperature()).
set_min(500).
set_max(3000)).

set_condition(ThermodynamicQuantity.mole_fraction_of_a_component("C"), 0.
↪→01).

calculate().
get_values_grouped_by_stable_phases_of(ThermodynamicQuantity.

↪→temperature(),
ThermodynamicQuantity.volume_

↪→fraction_of_a_phase("ALL"))
)

4.3.6 Phase diagram calculations

For the phase diagram (map) calculation, everything that you can configure in the Equilibrium Calculator when choos-
ing Phase diagram in Graphical Mode can also be configured in this calculation. In Console Mode the phase diagram
is created using the Map command. The minimum you need to specify are elements, conditions and two calculation
axes. Everything else is set to default values, if you do not specify otherwise.

Example:

from tc_python import *

with TCPython() as start:
phase_diagram = (

start.
select_database_and_elements("FEDEMO", ["Fe", "C"]).
get_system().
with_phase_diagram_calculation().

with_first_axis(CalculationAxis(ThermodynamicQuantity.temperature()).
set_min(500).
set_max(3000)).

with_second_axis(CalculationAxis(ThermodynamicQuantity.mole_fraction_of_
↪→a_component("C")).

set_min(0).
set_max(1)).

(continues on next page)
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set_condition(ThermodynamicQuantity.mole_fraction_of_a_component("C"), 0.
↪→01).

calculate().
get_values_grouped_by_stable_phases_of(ThermodynamicQuantity.mass_

↪→fraction_of_a_component("C"),
ThermodynamicQuantity.

↪→temperature())
)

4.3.7 Diffusion calculations

For diffusion calculations, everything that you can configure in the Diffusion Calculator can also be configured in this
calculation. The minimum you need to specify are elements, temperature, simulation time, a region with a grid and
width, a phase and an initial composition.

Example:

from tc_python import *

with TCPython() as start:
diffusion_result = (

start.
select_thermodynamic_and_kinetic_databases_with_elements("FEDEMO", "MFEDEMO",

↪→ ["Fe", "Ni"]).
get_system().
with_isothermal_diffusion_calculation().

set_temperature(1400.0).
set_simulation_time(108000.0).
add_region(Region("Austenite").

set_width(1E-4).
with_grid(CalculatedGrid.linear().set_no_of_points(50)).
with_composition_profile(CompositionProfile().

add("Ni", ElementProfile.linear(10.0, 50.0))
).

add_phase("FCC_A1")).
calculate())

distance, ni_fraction = diffusion_result.get_mass_fraction_of_component_at_time("Ni",
↪→ 108000.0)

4.3.8 Property Model calculations

For Property Model calculations, everything that you can configure in the Property Model Calculator in Graphical
Mode can also be configured in this calculation. The minimum you need to specify are elements, composition and
which Property Model you want to use.

Example:

from tc_python import *

with TCPython() as start:
(continues on next page)
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print("Available Property Models: {}".format(start.get_property_models()))
property_model = (

start.
select_database_and_elements("FEDEMO", ["Fe", "C"]).
get_system().
with_property_model_calculation("Driving force").
set_composition("C", 1.0).
set_argument("precipitate", "GRAPHITE"))

print("Available arguments: {}".format(property_model.get_arguments()))
result = property_model.calculate()

print("Available result quantities: {}".format(result.get_result_quantities()))
driving_force = result.get_value_of("normalizedDrivingForce")

4.3.9 Material to Material calculations

Material to Material calculations are generally regular single equilibrium, property diagram or phase diagram calcu-
lations but they are specialised to handle the mixture of two materials A and B. Everything that you can configure
in the Material to Material Calculator in Graphical Mode can also be configured in this calculation. The minimum
required configuration is shown below for a Property diagram calculation for varying amount of material B. The other
calculators (single fraction of material B and phase diagram calculations) are configured in a similar way.

Example:

from tc_python import *

with TCPython() as start:
material_to_material_property_diagram = (

start.
select_database_and_elements("FEDEMO", ["Fe", "Cr", "Ni", "C"]).
get_system().
with_material_to_material().
with_property_diagram_calculation().
set_material_a({"Cr": 10.0, "Ni": 15.0}, "Fe").
set_material_b({"Cr": 15.0, "Ni": 10.0}, "Fe").
set_activities({"C": 0.1}).
with_constant_condition(ConstantCondition.temperature(800 + 273.15)).
with_axis(MaterialToMaterialCalculationAxis.fraction_of_material_b(from_

↪→fraction=0.0,
to_

↪→fraction=1.0,
start_

↪→fraction=0.5))
)

result = material_to_material_property_diagram.calculate()
data = result.get_values_grouped_by_quantity_of(MATERIAL_B_FRACTION,

ThermodynamicQuantity.volume_
↪→fraction_of_a_phase(ALL_PHASES))

(continues on next page)
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for group in data.values():
fractions_of_b = group.x
volume_fractions_of_phase = group.y
phase_name = group.label

4.3.10 Process Metallurgy calculations

Process Metallurgy calculations are specialized to support the convenient handling of component-based additions (i.e.,
slag compositions such as 50% Al2O3 - 30% CaO - 20% SiO2), provide tailor-made result quantities, a framework for
developing kinetic process simulations, and more useful features.

There are two distinct types of calculations:

• tc_python.process_metallurgy.equilibrium.EquilibriumCalculation: isothermal and adiabatic
equilibrium calculations

• tc_python.process_metallurgy.process.ProcessSimulationCalculation: a kinetic process simu-
lation framework, based on an Effective Equilibrium Reaction Zone (EERZ) approach

Equilibrium calculation example:
Equilibrium calculations are useful in a large range of situations when considering the kinetics of a process is unnec-
essary.

from tc_python import *

with TCPython() as session:
metal = EquilibriumAddition({"Fe": None, "C": 4.5, "Si": 1.0}, 100e3,␣

↪→temperature=1650 + 273.15)
slag = EquilibriumAddition({"CaO": 75, "Al2O3": 25}, 3e3, temperature=1600 + 273.15)
gas = EquilibriumGasAddition({"O2": 100}, 1000, amount_unit=GasAmountUnit.NORM_CUBIC_

↪→METER)
calc = session.with_metallurgy().with_adiabatic_equilibrium_

↪→calculation(ProcessDatabase.OXDEMO)

(calc
.add_addition(metal)
.add_addition(slag)
.add_addition(gas))

result = calc.calculate()

print(f"Stable phases: {result.get_stable_phases()}, temperature: {result.get_
↪→temperature()} K")

Process simulation example:
TC-Python is providing a framework for modelling in principle any process in metallurgy, especially steel-making. It is
up to the user to actually develop a concrete model for the process in question. The framework is in the current release
limited to one reaction zone connecting two bulk zones. These bulk zones are typically the steel melt and the top slag,
but not limited to that. The framework in its current version has proven to be useful to model industrial ladle furnaces,
AOD- and VOD-converters and more. Process features such as heating and cooling, heat transfer between the bulk
zones, inclusion formation and their flotation, etc., can be modelled.

This is a very simplified minimal but complete model mimicking a BOF process:
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from tc_python import *

with TCPython() as session:
calc = (session.with_metallurgy()

.with_adiabatic_process_calculation(ProcessDatabase.OXDEMO)

.set_end_time(15 * 60))

steel_zone = MetalBulkZone(density=7800)
slag_zone = SlagBulkZone(density=4500)

steel_zone.add_addition(SingleTimeAddition({"Fe": None, "C": 4.5, "Si": 1.0}, 120e3,
temperature=1600 + 273.15), time=0)

slag_zone.add_addition(SingleTimeAddition({"CaO": 75, "SiO2": 25}, 1.2e3,
temperature=1500 + 273.15,
composition_unit=CompositionUnit.MOLE_

↪→PERCENT), time=0)

steel_zone.add_continuous_addition(ContinuousGasAddition({"O2": 100}, 1,
rate_unit=GasRateUnit.NORM_

↪→CUBIC_METER_PER_SEC))

calc.with_reaction_zone(ReactionZone(area=10.0,
left_zone=steel_zone, mass_transfer_coefficient_

↪→left=1.0e-5,
right_zone=slag_zone, mass_transfer_coefficient_

↪→right=1.0e-6))

result = calc.calculate()

print(f"Stable phases in the steel melt: {result.get_stable_phases(steel_zone)}")
print(f"C-content in steel vs. time: {result.get_composition_of_phase_group(steel_

↪→zone,
␣

↪→PhaseGroup.ALL_METAL)['C']}")

4.3.11 Additive Manufacturing calculations

For Additive Manufacturing calculations, everything that you can configure in the AM Calculator in Graphical Mode
can also be configured in this calculation. In the minimal case, you do not need to specify any options (the material
used by default is IN625).

from tc_python import *

with TCPython() as start:
am_result = (start.with_additive_manufacturing()

.with_steady_state_calculation()

.calculate())

print(f"Melt pool depth: {am_result.get_meltpool_depth()}")
plotter, mesh = am_result.get_pyvista_plotter()
plotter.add_mesh(mesh)
plotter.show()
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With several custom settings a basic calculation looks like this:

from tc_python import *

with TCPython() as start:
am_result = (start.with_additive_manufacturing()

.with_steady_state_calculation()

.disable_fluid_flow_marangoni()

.disable_separate_materials()

.with_material_properties(MaterialProperties.from_library("IN718"))

.set_powder_density(90)

.set_ambient_temperature(15 + 273.15)

.set_base_plate_temperature(25 + 273.15)

.with_top_boundary_conditions(TopBoundaryConditions().set_radiation_
↪→emissivity(0.2))

.with_heat_source(HeatSource.conical()
.set_power(210)
.set_absorptivity(80.0))

.calculate())

print(f"Melt pool depth: {am_result.get_meltpool_depth()}")
plotter, mesh = am_result.get_pyvista_plotter()
plotter.add_mesh(mesh)
plotter.show()

Tip: The graphical visualization and extraction of data from the 3D result dataset requires the package pyvista. More
details are provided in the section Optional packages.

4.4 Result

All calculations have a method called calculate() that starts the calculations and when finished, returns a Result.
The Result classes have very different methods, depending on the type of calculation.

The Result is used to get numerical values from a calculation that has run.

The Result can be saved to disk by the method save_to_disk().

Previously saved results can be loaded by the method load_result_from_disk() on the SetUp class.

Example:

# code above sets up the calculation
r = calculation.calculate()
time, meanRadius = r.get_mean_radius_of("AL3SC")

The Result objects are completely independent from calculations done before or after they are created. The objects
return valid values corresponding to the calculation they were created from, for their lifetime. The only exception is if
you call calculate() and not calculate_with_state() on a single equilibrium calculation.

As in the following example you can mix different calculations and results, and use old results after another calculation
has run.

Example:
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# ...
# some code to set up a single equilibrium calculation
# ...

single_eq_result = single_eq_calculation.calculate_with_state()

# ...
# some code to set up a precipitation calculation
# ...

prec_result = precipitation_calculation.calculate()

# ...
# some code to set up a Scheil calculation
# ...

scheil_result = scheil_calculations.calculate()

# now it is possible to get results from the single equilibrium calculation,
# without having to re-run it (because it has been calculated with saving of the state)

gibbs = single_eq_result.get_value_of("G")

4.4.1 DiffusionResult

The DiffusionResult class, that is returned when calling calculate() on any DiffusionCalculation, has the possibility to
create a ContinuedDiffusionCalculation, in addition to the “normal” functionality for results. This makes it possible to
run a diffusion calculation and then, depending on the result, change some settings and continue.

Example:

# ...
# some code to set up a Diffusion calculation
# ...
first_diffusion_result = diffusion_calculation.calculate()

continued_calculation = first_diffusion_result.with_continued_calculation()

continued_calculation.set_simulation_time(110000.0)
continued_calculation.with_left_boundary_condition(BoundaryCondition.mixed_zero_flux_and_
↪→activity().set_activity_for_element('C', 1.0))
second_result = continued_calculation.calculate()
# ...
# Now you can use get second_result to get calculated values, just as normal.
# You can also use first_diffusion_result even after second_result is created.
# You can also use second_result (and even first_diffusion_result) to create a new␣
↪→ContinuedDiffusionCalculation by calling with_continued_calculation.
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4.5 Property Model Framework

The Python Property Model SDK extends the Thermo-Calc software to enable you to create your own Property Models.
A Property Model is a Python-based calculation that can use any TC-Python functionality (including diffusion and
precipitation calculations) but is usable through the Graphical User Interface (UI) of Thermo-Calc in a more simple
way. It is typically used to model material properties but by no means limited to that. Examples of Property Models
provided by Thermo-Calc include Martensite and Pearlite formation in steel.

The Property Model Framework uses standard Python 3 beginning with Thermo-Calc 2021a and can access all TC-
Python functionality and any Python package including numpy, scipy, tensorflow, etc. The actual calculation code is
nearly identical, regardless if called from within a Property Model or from standard Python.

This is a complete rewrite of the original version of the framework that was based on Jython 2.7 and therefore had a
number of limitations. Property models written with the old Property Model Framework before Thermo-Calc
2021a are not compatible with the new framework. However, the migration should be relatively easy because the
syntax was changed as little as possible.

4.5.1 Property models vs. TC-Python

The main difference between a Property Model and regular TC-Python code is that a Property Model is directly inte-
grated into the UI of Thermo-Calc via a plugin architecture while TC-Python code can only be accessed by programs
and scripts written in Python.

The user should develop a Property Model if the functionality needs to be available from the Thermo-Calc UI, especially
if it should be applied by other users not familiar to programming languages. Otherwise it is preferable to implement
the functionality directly in a TC-Python program. If required, Property Models can as well be accessed from within
TC-Python.

4.5.2 Architecture

Every Property Model needs to contain a class that implements the interface tc_python.propertymodel_sdk.
PropertyModel. There are naming conventions that must to be fulfilled: the file name is required to follow the
the pattern XYPythonModel.py and the name of the class needs to match this. Additionally the file must be placed
in a directory named XYPython within the Property Model directory. The content of the placeholder XY can be freely
chosen.

A simple complete Property Model, saved in a file called SimplePythonModel.py in the directory SimplePython,
looks like this:

from tc_python import *

class SimplePythonModel(PropertyModel):
def provide_model_category(self) -> List[str]:

return ["Demo"]

def provide_model_name(self) -> str:
return "My Demo Model"

def provide_model_description(self) -> str:
return "This is a demo model."

def provide_ui_panel_components(self) -> List[UIComponent]:
(continues on next page)
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return [UIBooleanComponent("CHECKBOX", "Should this be checked?", "Simple␣
↪→checkbox", setting=False)]

def provide_calculation_result_quantities(self) -> List[ResultQuantity]:
return [create_general_quantity("RESULT", "A result")]

def evaluate_model(self, context: CalculationContext):
if context.get_ui_boolean_value("CHECKBOX"):

self.logger.info("The checkbox is checked")

# obtain the entered values from the GUI
composition_as_mass_fraction = context.get_mass_fractions()
temp_in_k = context.get_temperature()
calc = context.system.with_single_equilibrium_calculation()
# continue with a TC-Python calculation now ...

context.set_result_quantity_value("RESULT", 5.0) # the value would normally␣
↪→have been calculated

The basic building blocks of the Property Model API are:

• tc_python.propertymodel_sdk.ResultQuantity: Defines a calculation result of a Property Model that
will be provided to the UI after each model evaluation

• tc_python.propertymodel_sdk.CalculationContext: Provides access to the data from the UI (such as
the entered composition and temperature) and to the current TC-Python system object which is the entrypoint
for using TC-Python from within the Property Model

• tc_python.propertymodel_sdk.UIComponent: These are the UI-components that create the user interface
of the Property Model within the model panel of the Thermo-Calc application UI. Different components are
available (for example checkboxes, text fields and lists).

4.5.3 Property Model directory

The Property Model py-files need to be located within subdirectories of the Property Model directory, e.g.
PropertyModels/XYPython/XYPythonModel.py. The default Property Model directory can be changed in the
menu Tools -> Options in the graphical user interface.

Operating sys-
tem

Default Property Model directory

Windows C:\Program Files\Thermo-Calc\2025b\PropertyModels
Linux /home/UserName/Thermo-Calc/2025b/PropertyModels or: /opt/Thermo-Calc/

2025b/PropertyModels
MacOS /Applications/Thermo-Calc-2025b.app/Contents/Resources/PropertyModels

Note: The Property Model directory location has been changed in the release 2023b.
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FIVE

BEST PRACTICES

5.1 Re-use of the single equilibrium calculation state

The Thermo-Calc core keeps an internal state containing the data from previously performed calculations (such as
composition of sublattices, previously formed phases, . . . ). This will be used for start values of future calculations (if
not explicitly overwritten) and can strongly influence their convergence and calculation time. It can be useful to save
and restore later the core-state in advanced use cases, these include:

• Improving the convergence speed in case of very complicated equilibria if a similar equilibrium had been cal-
culated already before. Similarity refers here primarily to composition, temperature and entered phase set. This
case can occur for example with the Nickel-database TCNi.

• Convenient and fast switching between states that have changed a lot (for example regarding suspended phases,
numerical settings, . . . )

The mechanism of saving and restoring the state is called bookmarking and is controlled with the two methods
tc_python.single_equilibrium.SingleEquilibriumCalculation.bookmark_state() and tc_python.
single_equilibrium.SingleEquilibriumCalculation.set_state_to_bookmark(). The following short ex-
ample demonstrates how to switch between two different states easily in practice:

from tc_python import *

with TCPython() as session:
calc = (session.

select_database_and_elements("FEDEMO", ["Fe", "C"]).
get_system().
with_single_equilibrium_calculation().
set_condition(ThermodynamicQuantity.temperature(), 2000.0).
set_condition("X(C)", 0.01))

calc.calculate()
bookmark_temp_condition = calc.bookmark_state()

calc.set_phase_to_fixed("BCC", 0.5)
calc.remove_condition(ThermodynamicQuantity.temperature())
bookmark_fixed_phase_condition = calc.bookmark_state()

result_temp = calc.set_state_to_bookmark(bookmark_temp_condition)
print("Conditions do contain temperature: {}".format(result_temp.get_conditions()))
# this calculation had already been performed
print("Stable phases (do not contain BCC): {}".format(result_temp.get_stable_

↪→phases()))
(continues on next page)
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result_fixed_phase = calc.set_state_to_bookmark(bookmark_fixed_phase_condition)
print("Conditions do not contain temperature: {}".format(result_fixed_phase.get_

↪→conditions()))
# this calculation had **not yet** been performed
print("Stable phases (do contain BCC): {}".format(calc.calculate().get_stable_

↪→phases()))

5.2 Re-use and saving of results

Before a calculation is run in TC-Python, a check is made to see if the exact same calculation has run before, and if
that is the case, the result from the calculation can be loaded from disk instead of being re-calculated.

This functionality is always enabled within a script running TC-Python, but you can make it work the same way when
re-running a script, or even when running a completely different script.

To use results from previous calculations, set a folder where TC-Python saves results, and looks for previous results.

This is controlled by the method tc_python.server.SetUp.set_cache_folder().

from tc_python import *

with TCPython() as start:
start.set_cache_folder("cache")

This folder can be a network folder and shared by many users. The calculation is not re-run if there is a previous
TC-Python calculation with the same cache folder and exactly the same settings; the result is instead loaded from disk.

Another possibility is to explicitly save the result to disk and reload it later:

from tc_python import *

with TCPython() as start:
# ... the system and calculator are set up and the calculation is performed
result = calculator.calculate()

result.save_to_disk("./result_dir")

You can then load the result again in another session:

from tc_python import *

with TCPython() as start:
result = SetUp().load_result_from_disk().diffusion("./result_dir")
x, frac = result.get_mole_fraction_of_component_at_time("Cr", 1000.0)
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5.3 All TC-Python objects are non-copyable

Never create a copy of an instance of a class in TC-Python, neither by using the Python built-in function deepcopy()
nor in any other way. All classes in TC-Python are proxies for classes in the underlying calculation server and normally
hold references to result files. A copied class object in Python would consequently point to the same classes and result
files in the calculation server.

Instead of making a copy, always create a new instance:

from tc_python import *

with TCPython() as start:
system = start.select_database_and_elements("FEDEMO", ["Fe", "Cr"]).get_system()
calculator = system.with_single_equilibrium_calculation()

# *do not* copy the `calculator` object, create another one instead
calculator_2 = system.with_single_equilibrium_calculation()

# now you can use both calculators for different calculations ...

5.4 Python Virtual Environments

A Python installation can have several virtual environments. You can think of a virtual environment as a collection of
third party packages that you have access to in your Python scripts. tc_python is such a package.

To run TC-Python, you need to install it into the same virtual environment as your Python scripts are running in.
If your scripts fail on import tc_python, you need to execute the following command in the terminal of the same
Python environment as your script is running in:

pip install TC_Python-<version>-py3-none-any.whl

If you use the PyCharm IDE, you should do that within the Terminal built into the IDE. This Terminal runs automat-
ically within your actual (virtual) environment.

To prevent confusion, it is recommend in most cases to install TC-Python within your global interpreter, for example
by running the pip install command within your default Anaconda prompt.

5.5 Using with TCPython() efficiently

Normally you should call with TCPython() only once within each process.

Note: When leaving the with-clause, the Java backend engine process is stopped and all temporary data is deleted.
Finally when entering the next with-clause a new Java process is started. This can take several seconds.

If appropriate, it is safe to run with TCPython() in a loop. Due to the time it takes this only makes sense if the
calculation time per iteration is longer than a minute.

To prevent calling with TCPython() multiple times and cleaning up temporary data, you can use the following pattern.

Example:
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from tc_python import *

# ...

def calculation(calculator):
# you could also pass the `session` or `system` object if more appropriate
calculator.set_condition("W(Cr)", 0.1)
# further configuration ...

result = calculator.calculate()
# ...
result.invalidate() # if the temporary data needs to be cleaned up immediately

if __name__ == '__main__':
with TCPython() as session:

system = session.select_database_and_elements("FEDEMO", ["Fe", "Cr"]).get_
↪→system()

calculator = system.with_single_equilibrium_calculation()

for i in range(50):
calculation(calculator)

5.6 Parallel calculations

It is possible to perform parallel calculations with TC-Python using multi-processing.

Note: Please note that multi-threading is not suitable for parallelization of computationally intensive tasks in Python.
Additionally the Thermo-Calc core is not thread-safe. Using suitable Python-frameworks it is also possible to dispatch
the calculations on different computers of a cluster.

A general pattern that can be applied is shown below. This code snippet shows how to perform single equilibrium
calculations for different compositions in parallel. In the same way all other calculators of Thermo-Calc can be used
or combined. For performance reasons in a real application, probably numpy arrays instead of Python arrays should be
used.

Example:

import concurrent.futures

from tc_python import *

def do_perform(parameters):
# this function runs within an own process
with TCPython() as start:

elements = ["Fe", "Cr", "Ni", "C"]
calculation = (start.select_database_and_elements("FEDEMO", elements).

get_system().
with_single_equilibrium_calculation().

(continues on next page)
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set_condition("T", 1100).
set_condition("W(C)", 0.1 / 100).
set_condition("W(Ni)", 2.0 / 100))

phase_fractions = []
cr_contents = range(parameters["cr_min"],

parameters["cr_max"],
parameters["delta_cr"])

for cr in cr_contents:
result = (calculation.

set_condition("W(Cr)", cr / 100).
calculate())

phase_fractions.append(result.get_value_of("NPM(BCC_A2)"))

return phase_fractions

if __name__ == "__main__":
parameters = [

{"index": 0, "cr_min": 10, "cr_max": 15, "delta_cr": 1},
{"index": 1, "cr_min": 15, "cr_max": 20, "delta_cr": 1}

]

bcc_phase_fraction = []
num_processes = 2

with concurrent.futures.ProcessPoolExecutor(num_processes) as executor:
for result_from_process in zip(parameters, executor.map(do_perform, parameters)):

# params can be used to identify the process and its parameters
params, phase_fractions_from_process = result_from_process
bcc_phase_fraction.extend(phase_fractions_from_process)

# use the result in `bcc_phase_fraction`, for example for plotting

5.7 Handling crashes of the calculation engine

In some cases the Thermo-Calc calculation engine can crash. If batch calculations are performed, this brings down the
complete batch. To handle this situation there is an exception you can use.

UnrecoverableCalculationException

That exception is thrown if the calculation server enters a state where no further calculations are possible. You should
catch that exception outside of the with TCPython() clause and continue within a new with-clause.

Example:

from tc_python import *

for temperature in range(900, 1100, 10):
try:

(continues on next page)
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with TCPython() as start:
diffusion_result = (

start.
select_thermodynamic_and_kinetic_databases_with_elements("FEDEMO",

↪→"MFEDEMO", ["Fe", "Ni"]).
get_system().
with_isothermal_diffusion_calculation().

set_temperature(temperature).
set_simulation_time(108000.0).
add_region(Region("Austenite").

set_width(1E-4).
with_grid(CalculatedGrid.linear().set_no_of_points(50)).
with_composition_profile(CompositionProfile().

add("Ni", ElementProfile.linear(10.0, 50.0))
).

add_phase("FCC_A1")).
calculate())

distance, ni_fraction = diffusion_result.get_mass_fraction_of_component_at_
↪→time("Ni", 108000.0)

print(ni_fraction)

except UnrecoverableCalculationException as e:
print('Could not calculate. Continuing with next...')

5.8 Using TC-Python within a Jupyter Notebook or the Python con-
sole

TC-Python can also be used from within an interactive Jupyter Notebook and a Python console as well as similar prod-
ucts. The main difference from a regular Python program is that it is not recommended to use a with-clause to manage
the TC-Python resources. That is only possible within a single Jupyter Notebook cell. Instead the standalone func-
tions tc_python.server.start_api_server() and tc_python.server.stop_api_server() should be used
for manually managing the resources.

Note: The resources of TC-Python are primarily the Java-process running on the backend side that performs the actual
calculations and the temporary-directory of TC-Python that can grow to a large size over time, especially if precipitation
calculations are performed. If a with-clause is used, these resources are automatically cleared after use.

You need to make sure that you execute the two functions tc_python.server.start_api_server() and
tc_python.server.stop_api_server() exactly once within the Jupyter Notebook session. If not stopping TC-
Python, extra Java-processes might be present and the temporary disk-space is not cleared. However, these issues can
be resolved manually.

The temporary directories of TC-Python are named, for example, TC_TMP4747588488953835507 that has a random
ID. The temporary directory on different operating systems varies according to the pattern shown in the table.
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Operating sys-
tem

Temporary directory

Windows C:\Users{UserName}\AppData\Local\Temp\TC_TMP4747588488953835507
MacOS /var/folders/g7/7du81ti_b7mm84n184fn3k910000lg/T/

TC_TMP4747588488953835507
Linux /tmp/TC_TMP4747588488953835507

In a Jupyter Notebook some features of an IDE such as auto-completion (TAB-key), available method lookup (press .
and then TAB) and parameter lookup (set the cursor within the method-parenthesis and press SHIFT + TAB or SHIFT
+ TAB + TAB for the whole docstring) are also available.

Example using TC-Python with a Jupyter Notebook:

5.9 Property Model Framework

5.9.1 Debugging Property Model code

You can debug property models while running them from Thermo-Calc.

• Start Thermo-Calc and create a Property Model calculator.

• Select the model you want to debug and check the debug checkbox in the lower right corner of the Python code
tab.
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Now the model that you want to debug has been updated with code needed to connect with Thermo-Calc.

• Start debugging the model in the IDE of your choice.

Note: You must use a Python interpreter where TC-Python is installed.

In PyCharm it looks like this:

Note: When your IDE and Thermo-Calc have sucessfully connected, you will see this in the Thermo-Calc log:

10:34:42,170 INFO Waiting for developer(!) to start Python process in debugger...
↪→DrivingForcePythonModel
10:34:42,171 INFO Connected successfully to the Python process for the model
↪→'DrivingForcePythonModel' in DEBUG mode

You can stop the debug session in your IDE, change the model code, and start debugging again. The changes you made
will take effect in Thermo-Calc without the need to restart. If you for instance changed the method evaluate_model(),
the change will take effect the next time you press Perform.
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It is also possible to start the models from TC-Python. The workflow is exactly the same as described above, ex-
cept instead of starting Thermo-Calc graphical user interface, you start a Python script and use the parameter de-
bug_model=True when selecting your model.

from tc_python import *

with TCPython() as start:
property_model = (

start.
select_database_and_elements("FEDEMO", ["Fe", "C"]).
get_system().
with_property_model_calculation("my own Driving Force", debug_model=True).
set_composition("C", 1.0).
)

property_model.calculate()

...

5.9.2 Developing Property Models in several files

You can split your Property Model code in several .py files, and there are two ways of doing that:

• side-by-side modules

• common modules

Side-by-side modules are Python files located in the same folder as the Property Model.

Common modules are Python files located in a folder outside of the Property Model folder, which makes it possible to
share them with several models as a common library.

5.9.2.1 side-by-side modules

You are required to:

• Add a __init__.py file to your Property Model folder

• Add all imports of side-by-side modules in your main Property Model Python file also to the __init__.py file

Example:

CriticalTemperaturesPythonModel.py (The main Property Model file):

from CriticalTemperaturesPython import CriticalTemperatures
from tc_python import *
import numpy as np

class CriticalTemperaturesPythonModel(PropertyModel):
...

__init__.py:

from CriticalTemperaturesPython.critical_temperatures_library import CriticalTemperatures

If you are using PyCharm, the package name of the Property Model might be highlighted as an error, in this case you
can mark the Property Model directory (i.e. the root of the present model directory) by right-clicking on it in the project
window of PyCharm and marking it as Sources Root:
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critical_temperatures_library.py:

from tc_python import *
import numpy as np
from scipy import optimize
from enum import Enum

class CriticalTemperatures(object):
...

Note: Modules installed in the Python interpreter such as numpy, scipy, etc can be imported as normal. This only
concerns files imported as side-by-side modules.

5.9.2.2 common modules

common modules work very similar to side-by-side modules except the import statements are done in the “main”
__init__.py file in Property Model directory.

You are required to:

• Add a __init__.py file to your property model folder.

• Add all imports of common modules in your main property model python file also to both the __init__.py file
in Property Model directory AND the __init__.py of the property model.

Example:

CriticalTemperaturesPythonModel.py (The main Property Model file):

from PropertyModels import Martensite
from tc_python import *

class CriticalTemperaturesPythonModel(PropertyModel):
...

__init__.py: (The init file located in the property model folder)

from PropertyModels import Martensite

__init__.py: (The init file located in Property Model directory)

from PropertyModels.common.martensite_library import Martensite

The file critical_temperatures_library.py should in this example be located in a folder called common in the
Property Model directory.

critical_temperatures_library.py:
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from tc_python import *
import numpy as np
from scipy import optimize
from enum import Enum

class CriticalTemperatures(object):
...

Note: common modules must be located in folder called common.

5.9.3 Alternative Python for Property Models

5.9.3.1 Default bundled Python interpreter

Thermo-Calc is by default using a Python 3 interpreter bundled to the software for running the property
models. It is containing the following major packages:

Package
colour-science
matplotlib
numpy
scikit-learn
scipy
pandas
pyvista
TC-Python
tmm

Warning: Any changes to the interpreter packages can therefore break Thermo-Calc and should
be avoided. If the installation gets broken, it can be fixed by reinstalling Thermo-Calc after having
removed it.

Please contact the Thermo-Calc support if you think that further packages might be useful in future re-
leases. If these packages are insufficient for you, it is possible to use another Python-interpreter: Config-
uring another Python interpreter.

The interpreter is located in different places depending on the platform:

Operating sys-
tem

Path to the bundled Python-interpreter

Windows C:\Program Files\Thermo-Calc\2025b\python\python.exe
Linux /home/UserName/Thermo-Calc/2025b/python/bin/python3
MacOS /Applications/Thermo-Calc-2025b.app/Contents/Resources/python/

bin/python3
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5.9.3.2 Configuring another Python interpreter

If you require additional Python-packages or prefer to use your own interpreter installed on your system,
you can change the interpreter used by Thermo-Calc to run the property models. Select Tools→Options
in the Thermo-Calc GUI and modify the path to that of your Python 3 interpreter of choice:

5.10 Process Metallurgy Calculations

5.10.1 Equilibrium calculations with changing elements between calculations

It is possible to add, change or remove additions after performing an equilibrium calculation using tc_python.
process_metallurgy.equilibrium.EquilibriumCalculation.calculate(). This will change the elements
being present in the system if the elements of the additions are differing. The Process Metallurgy Module will handle
this situation by reloading the database with the latest set of elements. While this is an appropriate approach in most
cases, there can be some disadvantages: reloading the database takes some time and the internal engine state is lost,
which may lead to successive calculations failures in some situations.

To avoid the database reload, it is possible to add the respective elements to additions being present in all calcu-
lations (with a zero-fraction):

from tc_python import *

with TCPython() as session:
calc = session.with_metallurgy().with_adiabatic_equilibrium_

↪→calculation(ProcessDatabase.OXDEMO)

# add the element Al with zero-fraction already
steel = EquilibriumAddition({'Fe': None, 'C': 4, 'Al': 0}, amount=100.0e3,␣

↪→temperature=1700 + 273.15)
slag = EquilibriumAddition({'CaO': 70, 'SiO2': 30}, amount=3.0e3, temperature=1700 +␣

↪→273.15)

al_addition = EquilibriumAddition({'Al': 100}, amount=1.0e3)

(calc
.add_addition(steel)
.add_addition(slag))

result_1 = calc.calculate()

calc.add_addition(al_addition)

result_2 = calc.calculate()
# evaluate the result as required ...

Or to add a later addition already before the first call to calculate() with a zero amount:

from tc_python import *

with TCPython() as session:
(continues on next page)
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calc = session.with_metallurgy().with_adiabatic_equilibrium_
↪→calculation(ProcessDatabase.OXDEMO)

steel = EquilibriumAddition({'Fe': None, 'C': 4}, amount=100.0e3, temperature=1700 +␣
↪→273.15)

slag = EquilibriumAddition({'CaO': 70, 'SiO2': 30}, amount=3.0e3, temperature=1700 +␣
↪→273.15)

# add the addition for now with zero-amount
al_addition = EquilibriumAddition({'Al': 100}, amount=0)

(calc
.add_addition(al_addition)
.add_addition(steel)
.add_addition(slag))

result_1 = calc.calculate()

calc.update_addition(al_addition.set_amount(1.0e3))

result_2 = calc.calculate()
# evaluate the result as required ...

5.10.2 Zones

TC-Python is providing a framework for building time-dependent kinetic simulations of industrial and academic met-
allurgical processes where liquid phases are important. It is based on an Effective Equilibrium Reaction Zone (EERZ)
approach which is separating a process into different zones. These zones have identical temperature and composition
and are called bulk zones. Such zones can be in contact and react with each other by reaction zones. That means a
reaction zone is modelling the interface between two bulk zones. One bulk zone is typically the steel melt and another
bulk zone the top slag.

5.10.3 Applications

While this approach can in principle be extended to any number of zones, in the current release TC-Python is providing
only one reaction zone. Practical work has however proven that this limitation is not critical for a lot of industrial
processes, including ladle furnaces, AOD- and VOD-converters. Even more processes can be modelled with some
limit of accuracy.

The reason for the power of the current implementation is that a number of important process features can be included:

• heating (tc_python.process_metallurgy.process.Zone.add_power())

• cooling (tc_python.process_metallurgy.process.Zone.add_power())

• heat transfer between bulk zones (tc_python.process_metallurgy.process.ReactionZone.
add_heat_transfer())

• inclusion formation

• inclusion flotation and other transfer of phase groups between bulk zones (tc_python.process_metallurgy.
process.ReactionZone.add_transfer_of_phase_group())
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• addition of material and gas at any time in any zone (tc_python.process_metallurgy.process.Zone.
add_addition() / tc_python.process_metallurgy.process.Zone.add_continuous_addition())

• an exhaust gas zone collecting all formed gas (tc_python.process_metallurgy.process.
ProcessSimulationResult.get_exhaust_gas())

• time-dependent definition of most parameters (e.g., mass transfer coefficient, transfer of phase group, heating,
etc.)

Please note that many of these features are called as well a reaction zone in other EERZ model implementations.

5.10.4 Implementation of practical process models

The Process Metallurgy Module has been successfully applied to a number of industrial processes.

Due to the broad range of industrial metallurgical processes, TC-Python is not providing ready-to-use models for certain
processes. There are however examples available for common processes and this collection will be extended over time.
The implementation of a model is an abstraction of the real process and should always be kept as simple as possible.
Practical experience has proven that in many situations not more than one reaction zone is required.

The mass transfer coefficient is a fundamental parameter describing the kinetics in a reaction zone and is generally
an empirical parameter. It depends however mostly on the geometry and stirring conditions in the process and not on
the material compositions. Further on, the mass transfer coefficient has usually typical values for a given process -
regardless of the actual furnace. That means that existing suggestions from the literature can be used as a starting point
to derive the actual mass transfer coefficient for the process of interest.
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6.1 Calculations

6.1.1 Module “single_equilibrium”

class tc_python.single_equilibrium.AbstractSingleEquilibriumCalculation(calculator)
Bases: AbstractCalculation

Abstract configuration required for a single equilibrium calculation.

Note: This is an abstract class that cannot be used directly.

disable_global_minimization()

Turns the global minimization completely off.

Returns
This SingleEquilibriumCalculation object

enable_global_minimization()

Turns the global minimization on (using the default settings).

Returns
This SingleEquilibriumCalculation object

get_components()→ List[str]
Returns a list of components in the system (including all components auto-selected by the database(s)).

Returns
The components

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.
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get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This SingleEquilibriumCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_component_to_entered(component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters
component – The component name or ALL_COMPONENTS

Returns
This SingleEquilibriumCalculation object

set_component_to_suspended(component: str, reset_conditions: bool = False)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
• reset_conditions – if ‘True’ also remove composition conditions for the component if

they are defined

• component – The component name or ALL_COMPONENTS

Returns
This SingleEquilibriumCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
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• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This SingleEquilibriumCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This SingleEquilibriumCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This SingleEquilibriumCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This SingleEquilibriumCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This SingleEquilibriumCalculation object

with_options(options: SingleEquilibriumOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This SingleEquilibriumCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)
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The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This SingleEquilibriumCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This SingleEquilibriumCalculation object

class tc_python.single_equilibrium.SingleEquilibriumCalculation(calculator)
Bases: AbstractSingleEquilibriumCalculation

Configuration for a single equilibrium calculation.

Note: Specify the conditions and possibly other settings, the calculation is performed with calculate().
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bookmark_state(bookmark_id: str = '')→ str
Puts a “bookmark” on the current calculation-state of the calculator allowing the program to return to this
state later as needed.

By bookmarking a state, you can simplify the convergence of equilibria when they strongly depend on
the starting conditions (i.e. the state). Also use it to improve performance by running a calculation, then
bookmarking it, and later returning to it for other equilibria whose conditions are “close” to the bookmarked
equilibrium.

This method is used in combination with the method set_state_to_bookmark().

Parameters
bookmark_id – The bookmark id. If omitted a generated id is used and returned

Returns
The bookmark id

calculate()→ SingleEquilibriumTempResult
Performs the calculation and provides a temporary result object that is only valid until something gets
changed in the calculation state. The method calculate() is the default approach and should be used in
most cases.

Returns
A new SingleEquilibriumTempResult object which can be used to get specific values
from the calculated result. It is undefined behavior to use that object after the state of the
calculation has been changed.

Warning: If the result object should be valid for the whole program lifetime, use
calculate_with_state() instead.

calculate_with_state(timeout_in_minutes: float = 0.0)→ SingleEquilibriumResult
Performs the calculation and provides a result object that reflects the present state of the calculation during
the whole lifetime of the object.

Note: Because this method has performance and temporary disk space overhead (i.e. it is resource heavy),
only use it when it is necessary to access the result object after the state is changed. In most cases you should
use the method calculate().

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A new SingleEquilibriumResult object which can be used later at any time to get specific
values from the calculated result.

disable_global_minimization()

Turns the global minimization completely off.

Returns
This SingleEquilibriumCalculation object
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enable_global_minimization()

Turns the global minimization on (using the default settings).

Returns
This SingleEquilibriumCalculation object

get_components()→ List[str]
Returns a list of components in the system (including all components auto-selected by the database(s)).

Returns
The components

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_interfacial_energy(matrix_phase: str, precipitate_phases: List[str], zero_volume_elements:
List[str] = ['C', 'N'])→ Dict[str, float]

Estimates the interfacial energy between a matrix phase and a precipitate phase using thermodynamic data
from a CALPHAD database. The approximation model is based on Becker’s bond energy approach.

Default: elements with no contribution to volume are C and N.

Parameters
• matrix_phase – The matrix phase.

• precipitate_phases – The list of precipitate phases for which interfacial energy be-
tween them and the matrix phase is to be calculated.

• zero_volume_elements – The elements that are assumed to not contribute to the volume.

Returns
A dictionary containing interfacial energy per precipitate phase.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

remove_all_conditions()

Removes all set conditions.

Returns
This SingleEquilibriumCalculation object
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remove_condition(quantity: Union[ThermodynamicQuantity, str])
Removes the specified condition.

Parameters
quantity – the thermodynamic quantity to set as condition; a Console Mode syntax string
can be used as an alternative (for example “X(Cr)”)

Returns
This SingleEquilibriumCalculation object

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This SingleEquilibriumCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_component_to_entered(component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters
component – The component name or ALL_COMPONENTS

Returns
This SingleEquilibriumCalculation object

set_component_to_suspended(component: str, reset_conditions: bool = False)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
• reset_conditions – if ‘True’ also remove composition conditions for the component if

they are defined

• component – The component name or ALL_COMPONENTS

Returns
This SingleEquilibriumCalculation object

set_condition(quantity: Union[ThermodynamicQuantity, str], value: float)
Sets the specified condition.

Parameters
• quantity – The thermodynamic quantity to set as condition; a Console Mode syntax string

can be used as an alternative (for example “X(Cr)”)

• value – The value of the condition

Returns
This SingleEquilibriumCalculation object
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set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This SingleEquilibriumCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This SingleEquilibriumCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This SingleEquilibriumCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This SingleEquilibriumCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This SingleEquilibriumCalculation object
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set_state_to_bookmark(bookmark_id: str)→ SingleEquilibriumTempResult
Resets the calculation state to a previously bookmarked state.

After calling this method, the calculation behaves exactly as it would after the bookmarked calculation ran.

This method is used in combination with the method bookmark_state().

Parameters
bookmark_id – The bookmark id of the state to return to.

Returns
A new SingleEquilibriumTempResult object which can be used to get specific values
from the calculated result. It is undefined behavior to use that object after the state of the
calculation has been changed.

with_options(options: SingleEquilibriumOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This SingleEquilibriumCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This SingleEquilibriumCalculation object
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with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This SingleEquilibriumCalculation object

class tc_python.single_equilibrium.SingleEquilibriumOptions

Bases: object

General simulation conditions for the thermodynamic calculations.

disable_approximate_driving_force_for_metastable_phases()

Disables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This SingleEquilibriumOptions object

disable_control_step_size_during_minimization()

Disables stepsize control during minimization (non-global).

Default: Enabled

Returns
This SingleEquilibriumOptions object

disable_force_positive_definite_phase_hessian()

Disables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This SingleEquilibriumOptions object

enable_approximate_driving_force_for_metastable_phases()

Enables the approximation of the driving force for metastable phases.

Default: Enabled

50 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This SingleEquilibriumOptions object

enable_control_step_size_during_minimization()

Enables stepsize control during normal minimization (non-global).

Default: Enabled

Returns
This SingleEquilibriumOptions object

enable_force_positive_definite_phase_hessian()

Enables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This SingleEquilibriumOptions object

set_global_minimization_max_grid_points(max_grid_points: int = 2000)
Sets the maximum number of grid points in global minimization. Only applicable if global minimization
is actually used.

Default: 2000 points

Parameters
max_grid_points – The maximum number of grid points

Returns
This SingleEquilibriumOptions object

set_max_no_of_iterations(max_no_of_iterations: int = 500)
Set the maximum number of iterations.

Default: max. 500 iterations

Note: As some models give computation times of more than 1 CPU second/iteration, this number is also
used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used.

Parameters
max_no_of_iterations – The max. number of iterations

Returns
This SingleEquilibriumOptions object
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set_required_accuracy(accuracy: float = 1e-06)
Sets the required relative accuracy.

Default: 1.0E-6

Note: This is a relative accuracy, and the program requires that the relative difference in each variable must
be lower than this value before it has converged. A larger value normally means fewer iterations but less
accurate solutions. The value should be at least one order of magnitude larger than the machine precision.

Parameters
accuracy – The required relative accuracy

Returns
This SingleEquilibriumOptions object

set_smallest_fraction(smallest_fraction: float = 1e-12)
Sets the smallest fraction for constituents that are unstable.

It is normally only in the gas phase that you can find such low fractions.

The default value for the smallest site-fractions is 1E-12 for all phases except for IDEAL phase with one
sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as
1E-30.

Parameters
smallest_fraction – The smallest fraction for constituents that are unstable

Returns
This SingleEquilibriumOptions object

class tc_python.single_equilibrium.SingleEquilibriumResult(result)
Bases: AbstractResult

Result of a single equilibrium calculation, it can be evaluated using a Quantity or Console Mode syntax.

change_pressure(pressure: float)
Change the pressure and re-evaluate the results from the equilibrium without minimizing Gibbs energy,
i.e. with higher performance. The properties are calculated at the new pressure using the phase amount,
temperature and composition of phases from the initial equilibrium. Use get_value_of() to obtain them.

Parameters
pressure – The pressure [Pa]

Returns
This SingleEquilibriumCalculation object

change_temperature(temperature: float)
Change the temperature and re-evaluate the results from the equilibrium without minimizing Gibbs energy,
i.e. with high performance. The properties are calculated at the new temperature using the phase amount,
pressure and composition of phases from the initial equilibrium. Use get_value_of() to obtain them.

Note: This is typically used when calculating room temperature properties (e.g. density) for a material
when it is assumed that the equilibrium phase amount and composition freeze-in at a higher temperature
during cooling.
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Parameters
temperature – The temperature [K]

Returns
This SingleEquilibriumCalculation object

get_components()→ List[str]
Returns the names of the components selected in the system (including any components auto-selected by
the database(s)).

Returns
The names of the selected components

get_conditions()→ List[str]
Returns the conditions.

Returns
The selected conditions

get_phases()→ List[str]
Returns the phases present in the system due to its configuration. It also contains all phases that
have been automatically added during the calculation, this is the difference to the method System.
get_phases_in_system().

Returns
The names of the phases in the system including automatically added phases

get_stable_phases()→ List[str]
Returns the stable phases (i.e. the phases present in the current equilibrium).

Returns
The names of the stable phases

get_value_of(quantity: Union[ThermodynamicQuantity, str])→ float
Returns a value from a single equilibrium calculation.

Parameters
quantity – The thermodynamic quantity to get the value of; a Console Mode syntax strings
can be used as an alternative (for example “NPM(FCC_A1)”)

Returns
The requested value

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine. This
affects only the state of the result object.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This SingleEquilibriumCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.
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Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

save_to_disk(path: str)
Saves the result to disk. Note that the result is a folder, containing potentially many files. The result can
later be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this SingleEquilibriumResult object

class tc_python.single_equilibrium.SingleEquilibriumTempResult(result)
Bases: AbstractResult

Result of a single equilibrium calculation that is only valid until something gets changed in the calculation state.
It can be evaluated using a Quantity or Console Mode syntax.

Warning: Note that it is undefined behavior to use that object after something has been changed in the state
of the calculation, this will result in an InvalidResultStateException exception being raised.

change_pressure(pressure: float)
Change the pressure and re-evaluate the results from the equilibrium without minimizing Gibbs energy,
i.e. with higher performance. The properties are calculated at the new pressure using the phase amount,
temperature and composition of phases from the initial equilibrium. Use get_value_of() to obtain them.

Parameters
pressure – The pressure [Pa]

Returns
This SingleEquilibriumCalculation object

change_temperature(temperature: float)
Change the temperature and re-evaluate the results from the equilibrium without minimizing Gibbs energy,
i.e. with high performance. The properties are calculated at the new temperature using the phase amount,
pressure and composition of phases from the initial equilibrium. Use get_value_of() to obtain them.

Note: This is typically used when calculating room temperature properties (e.g. density) for a material
when it is assumed that the equilibrium phase amount and composition freeze-in at a higher temperature
during cooling.

Parameters
temperature – The temperature [K]

Returns
This SingleEquilibriumCalculation object

get_components()→ List[str]
Returns the names of the components selected in the system (including any components auto-selected by
the database(s)).
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Returns
The names of the selected components

Raises
InvalidResultStateException – If something has been changed in the state of the cal-
culation since that result object has been created

get_conditions()→ List[str]
Returns the conditions.

Returns
List containing the selected conditions

Raises
InvalidResultStateException – If something has been changed in the state of the cal-
culation since that result object has been created

get_phases()→ List[str]
Returns the phases present in the system due to its configuration. It also contains all phases that
have been automatically added during the calculation, this is the difference to the method System.
get_phases_in_system().

Returns
The names of the phases in the system including automatically added phases

Raises
InvalidResultStateException – If something has been changed in the state of the cal-
culation since that result object has been created

get_stable_phases()→ List[str]
Returns the stable phases (i.e. the phases present in the current equilibrium).

Returns
The names of the stable phases

Raises
InvalidResultStateException – If something has been changed in the state of the cal-
culation since that result object has been created

get_value_of(quantity: Union[ThermodynamicQuantity, str])→ float
Returns a value from a single equilibrium calculation.

Parameters
quantity – The thermodynamic quantity to get the value of; a Console Mode syntax strings
can be used as an alternative (for example “NPM(FCC_A1)”)

Returns
The requested value

Raises
InvalidResultStateException – If something has been changed in the state of the cal-
culation since that result object has been created

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This SingleEquilibriumCalculation object
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Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

6.1.2 Module “batch_equilibrium”

class tc_python.batch_equilibrium.BatchEquilibriumCalculation(calculator)
Bases: AbstractCalculation

Configuration for a series of single equilibrium calculations performed in a vectorized fashion.

Note: Specify the conditions and call calculate().

Tip: The performance of batch equilibrium calculations can be significantly better than looping and using
SingleEquilibriumCalculation if the actual Thermo-Calc calculation is fast. There is little advantage if
the Thermo-Calc equilibrium calculations take a long time (typically for large systems and databases).

calculate(quantities: List[Union[ThermodynamicQuantity, str]], logging_frequency: int = 10,
timeout_in_minutes: float = 0.0)→ BatchEquilibriumResult

Runs the batch equilibrium calculation. The calculated BatchEquilibriumResult can then be queried
for the values of the quantities specified.

Example:

>>> quantities = ['G', 'X(BCC)']

Parameters
• quantities – A list of the quantities to be calculated.

• logging_frequency – Determines how often logging should be done.

• timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will be
unusable and a new TCPython block must be created for further calculations.

Returns
A BatchEquilibriumResult which later can be used to get specific values from the calcu-
lated result.

disable_global_minimization()

Turns the global minimization completely off.

Returns
This BatchEquilibriumCalculation object
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enable_global_minimization()

Turns the global minimization on (using the default settings).

Returns
This BatchEquilibriumCalculation object

get_components()→ List[str]
Returns a list of components in the system (including all components auto-selected by the database(s)).

Returns
The components

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

remove_all_conditions()

Removes all set conditions.

Returns
This BatchEquilibriumCalculation object

remove_condition(quantity: Union[ThermodynamicQuantity, str])
Removes the specified condition.

Parameters
quantity – the thermodynamic quantity to set as condition; a Console Mode syntax string
can be used as an alternative (for example “X(Cr)”)

Returns
This BatchEquilibriumCalculation object

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This BatchEquilibriumCalculation object
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Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_component_to_entered(component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters
component – The component name or ALL_COMPONENTS

Returns
This BatchEquilibriumCalculation object

set_component_to_suspended(component: str, reset_conditions: bool = False)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
• reset_conditions – if ‘True’ also remove composition conditions for the component if

they are defined

• component – The component name or ALL_COMPONENTS

Returns
This BatchEquilibriumCalculation object

set_condition(quantity: Union[ThermodynamicQuantity, str], value: float)
Sets the specified condition.

Parameters
• quantity – The thermodynamic quantity to set as condition; a Console Mode syntax string

can be used as an alternative (for example “X(Cr)”)

• value – The value of the condition

Returns
This BatchEquilibriumCalculation object

set_conditions_for_equilibria(equilibria: List[List[Tuple[Union[ThermodynamicQuantity, str],
float]]])

Set the conditions of the equilibria to be calculated.

This is done by sending a list of equilibria at once.

Each equilibrium itself is a list of conditions that will be changed for that equilibrium.

A condition is described by a tuple containing:

1. A Console Mode syntax string or a ThermodynamicQuantity instance,

2. A float value specifying the value of the condition.

Example:

>>> [[('T', 800), ('X(Cr)', 0.1)], [('T', 850), ('X(Cr)', 0.11)]]
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You can use ThermodynamicQuantity instead of a Console Mode syntax string when specifying type of
condition.

Example:

>>> [[(ThermodynamicQuantity.temperature(), 800), (ThermodynamicQuantity.mole_
↪→fraction_of_a_component('Cr'), 0.1)], [(ThermodynamicQuantity.temperature(),␣
↪→850), (ThermodynamicQuantity.mole_fraction_of_a_component('Cr'), 0.15)]]

Parameters
equilibria – The list of equilibria

Returns
This BatchEquilibriumCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This BatchEquilibriumCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This BatchEquilibriumCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This BatchEquilibriumCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

6.1. Calculations 59



TC-Python Documentation, Release 2025b

Returns
This BatchEquilibriumCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This BatchEquilibriumCalculation object

with_options(options: SingleEquilibriumOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This BatchEquilibriumCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This BatchEquilibriumCalculation object
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with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This BatchEquilibriumCalculation object

class tc_python.batch_equilibrium.BatchEquilibriumResult(result)
Bases: object

Result of a batch equilibrium calculation. This can be used to query for specific values.

get_values_of(quantity: Union[ThermodynamicQuantity, str])→ List[float]
Returns values from a batch equilibrium calculation.

Warning: The quantity must be one of the quantities specified for the
BatchEquilibriumCalculation object that created the result object.

Example:

>>> batch_result = batch_calculation.calculate(quantities = ['G', 'X(BCC)'])
>>> batch_result.get_values_of('G')

Parameters
quantity – the thermodynamic quantity to get the value of; a Console Mode syntax strings
can be used as an alternative (for example “NPM(FCC_A1)”)

invalidate()

Invalidates the object and frees the disk space used by it.

Note: This is only required if the disk space occupied by the object needs to be released during the
calculation. No data can be retrieved from the object afterwards.

6.1.3 Module “precipitation”

class tc_python.precipitation.FixedGrainSize(grain_radius: float = 0.0001)
Bases: GrainGrowthModel

set_grain_aspect_ratio(grain_aspect_ratio: float = 1.0)
Enter a numerical value. Default: 1.0.

Parameters
grain_aspect_ratio – The grain aspect ratio [-]
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class tc_python.precipitation.GrainGrowth(grain_size_distribution: GrainSizeDistribution)
Bases: GrainGrowthModel

disable_zener_pinning()

Disable Zener pinning to ignore the particle pinning effect on the grain growth. Zener pinning is by default
disabled when no grain size distribution is defined, i.e. a single constant grain size is used. The setting is
by default enabled when a grain size distribution is defined.

Returns
This GrainSizeDistribution object

enable_zener_pinning()

Enable Zener pinning to simulate the particle pinning effect on the grain growth. The setting is by default
enabled when a grain size distribution is defined.

Returns
This GrainSizeDistribution object

set_grain_boundary_energy(energy: float = 0.5)
Set the energy of the grain boundary.

Parameters
energy – The grain boundary energy [J/m2]

Returns
This GrainSizeDistribution object

set_grain_boundary_mobility_activation_energy(activation_energy: float = 242000.0)
Set the grain boundary mobility activation energy where the mobility is defined by an Arrhenius type of
equation.

Parameters
activation_energy – The mobility activation energy [J/mol]

Returns
This GrainSizeDistribution object

set_grain_boundary_mobility_pre_factor(pre_factor: float = 0.004)
Set the grain boundary mobility prefactor where the mobility is defined by an Arrhenius type of equation.

Parameters
pre_factor – The grain boundary mobility pre factor [m^4/(J s)]

Returns
This GrainSizeDistribution object

class tc_python.precipitation.GrainGrowthModel

Bases: object

Factory class providing objects representing a grain growth model.

classmethod fixed_grain_size(grain_radius: float = 0.0001)
Fixed grain radius size. Default: 1.0E-4 m

Parameters
grain_radius – The grain radius / size [m]

classmethod grain_growth(grain_size_distribution: GrainSizeDistribution)
Sets the initial grain size distribution for the matrix. Default: If the initial grain size distribution is not
explicitly provided, a constant average grains size will be used and no grain growth evaluated during the
simulation.
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Tip: Use this option if you want to study the further evolution of an existing microstructure.

Parameters
grain_size_distribution – grain size distribution

class tc_python.precipitation.GrainSizeDistribution

Bases: object

Represents the grain size distribution at a certain time.

add_radius_and_number_density(radius: float, number_density: float)
Adds a radius and number density pair to the grain size distribution.

Parameters
• radius – The radius [m]

• number_density – The number of grains per unit volume per unit length [m^-4]

Returns
This GrainSizeDistribution object

class tc_python.precipitation.GrowthRateModel(value)
Bases: Enum

Choice of the used growth rate model for a precipitate.

The most efficient model is the Simplified model, which is the default and applicable to most alloy systems under
the assumption that either the supersaturation is small, or the alloying elements have comparable diffusivity. If
all alloying elements are substitutional but they have remarkable diffusivity difference, e.g. in Al-Zr system, or if
the diffusivity is strongly composition-dependent, the General model is preferred. If the supersaturation is high,
and meanwhile there are fast-diffusing interstitial elements such as C, the Advanced model is more appropriate
to capture the NPLE mechanism.

ADVANCED = 3

The advanced model has been proposed by Chen, Jeppsson, and Ågren (CJA) (2008) and calculates the ve-
locity of a moving phase interface in multicomponent systems by identifying the operating tie-line from the
solution of the flux-balance equations. This model can treat both high supersaturation and cross-diffusion
rigorously. Spontaneous transitions between different modes (LE and NPLE) of phase transformation can
be captured without any ad-hoc treatment.

Note: Since it is not always possible to solve the flux-balance equations and it takes time, usage of a less
rigorous but simple and efficient model is preferred if possible.

GENERAL = 5

The general model is based on the Morral-Purdy model, which follows the same quasi-steady state ap-
proximation as the Simplified model, but improves it by taking the cross-diffusion into account.

NPLE = 11

The Non-Partitioning Local Equilibrium (NPLE) growth rate model is only available for alloy systems
where Fe is the major element and at least one interstitial element partitions into the precipitate phase. This
model is specifically designed to deal with the fast diffusion of interstitial elements (C, N, etc.) in Fe alloys.
Based on the Simplified growth model, it still holds a local equilibrium condition at the migrating interface.
It chooses a tie-line under NPLE condition so that the u-fractions of all substitutional elements and minor
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interstitial elements in the precipitate phase are the same as those in the far-field matrix phase (i.e. the
overall instantaneous matrix composition).

PARA_EQ = 10

The para-equilibrium model is only available for alloy systems where Fe is the major element and C is
the only interstitial element, which also partitions into the precipitate phase. The interstitial elements, e.g.
C, N, etc., usually have remarkably faster diffusion rate than the substitutional elements. Meanwhile, they
are assumed to have negligible volume contribution, and as a result the composition variables are replaced
by u-fractions when interstitial elements are included in the system. This model is specifically designed
to address the fast diffusion of C in Fe alloys. Based on the Simplified growth rate model it holds a para-
equilibrium condition at the migrating interface. Contrary to the regular ortho-equilibrium condition state
that assumes that all alloying elements are in equilibrium at the interface, the para-equilibrium assumes
only equilibrium for C. The substitutional elements are immobile and thus have the same compositions
(u-fractions) across the interface.

PE_AUTOMATIC = 12

The PE Automatic model enables the smooth transition from Paraequilibrium growth rate model to Simpli-
fied growth rate model. The rate of transition process is dependent on the relative differences in diffusion
between C and substitutional elements, as well as the differences in driving force between paraequilibrium
and ortho-equilibrium.

SIMPLIFIED = 2

The simplified model is based on the advanced model but avoids the difficulty of finding the operating
tie-line and uses instead the tie-line across the bulk composition. This is the default growth rate model.

class tc_python.precipitation.MatrixPhase(matrix_phase_name: str)
Bases: object

The matrix phase in a precipitation calculation

add_precipitate_phase(precipitate_phase: PrecipitatePhase)
Adds a precipitate phase.

Parameters
precipitate_phase – The precipitate phase

set_dislocation_density(dislocation_density: float = 5000000000000.0)
Enter a numerical value. Default: 5.0E12 m^-2.

Parameters
dislocation_density – The dislocation density [m^-2]

set_mobility_adjustment(element: str = 'all', prefactor: float = 1.0, activation_energy: float = 0.0)
A value that adds to the activation energy of mobility data from the database.

Parameters
• element – The alement to apply the adjustment for. If “all” is given, adjustment will apply

to all elements.

• prefactor – A parameter that multiplies to the mobility data from a database. This value
scales the mobility by a constant amount. This can be useful, for example, when the mate-
rial has a higher than normal vacancy concentration at the start of the precipitation simu-
lation (e.g. from a prior solutionizing and quenching treatment).

• activation_energy – A value that adds to the activation energy of mobility data from
a database. It scales the mobility by a temperature dependent amount. Similar usage as
mobility adjustment prefactor. [J/mol]
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set_molar_volume(volume: float)
Sets the molar volume of the phase.

Default: If not set, the molar volume is taken from the thermodynamic database (or set to 7.0e-6 m^3/mol
if the database contains no molar volume information).

Parameters
volume – The molar volume [m^3/mol]

with_elastic_properties_cubic(c11: float, c12: float, c44: float)
Sets the elastic properties to “cubic” and specifies the elastic stiffness tensor components. Default: if not
chosen, the default is DISREGARD

Parameters
• c11 – The stiffness tensor component c11 [GPa]

• c12 – The stiffness tensor component c12 [GPa]

• c44 – The stiffness tensor component c44 [GPa]

with_elastic_properties_disregard()

Set to disregard to ignore the elastic properties. Default: This is the default option

with_elastic_properties_isotropic(shear_modulus: float, poisson_ratio: float)
Sets elastic properties to isotropic. Default: if not chosen, the default is DISREGARD

Parameters
• shear_modulus – The shear modulus [GPa]

• poisson_ratio – The Poisson’s ratio [-]

with_grain_growth_model(grain_growth_model: GrainGrowthModel)
Sets the model for grain growth. Either fixed size or with a starting distribution

Default: Fixed grain radius size 1.0E-4 m

Parameters
grain_growth_model – the grain growth model

class tc_python.precipitation.NumericalParameters

Bases: object

Numerical parameters

set_max_overall_volume_change(max_overall_volume_change: float = 0.001)
This defines the maximum absolute (not ratio) change of the volume fraction allowed during one time step.
Default: 0.001

Parameters
max_overall_volume_change – The maximum absolute (not ratio) change of the volume
fraction allowed during one time step [-]

set_max_radius_points_per_magnitude(max_radius_points_per_magnitude: float = 200.0)
Sets the maximum number of grid points over one order of magnitude in radius. Default: 200.0

Parameters
max_radius_points_per_magnitude – The maximum number of grid points over one
order of magnitude in radius [-]
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set_max_rel_change_critical_radius(max_rel_change_critical_radius: float = 0.1)
Used to place a constraint on how fast the critical radium can vary, and thus put a limit on time step. Default:
0.1

Parameters
max_rel_change_critical_radius – The maximum relative change of the critical radius
[-]

set_max_rel_change_nucleation_rate_log(max_rel_change_nucleation_rate_log: float = 0.5)
This parameter ensures accuracy for the evolution of effective nucleation rate. Default: 0.5

Parameters
max_rel_change_nucleation_rate_log – The maximum logarithmic relative change of
the nucleation rate [-]

set_max_rel_radius_change(max_rel_radius_change: float = 0.01)
The maximum value allowed for relative radius change in one time step. Default: 0.01

Parameters
max_rel_radius_change – The maximum relative radius change in one time step [-]

set_max_rel_solute_composition_change(max_rel_solute_composition_change: float = 0.01)
Set a limit on the time step by controlling solute depletion or saturation, especially at isothermal stage.
Default: 0.01

Parameters
max_rel_solute_composition_change – The limit for the relative solute composition
change [-]

set_max_time_step(max_time_step: float = 0.1)
The maximum time step allowed for time integration as fraction of the simulation time. Default: 0.1

Parameters
max_time_step – The maximum time step as fraction of the simulation time [-]

set_max_time_step_during_heating(max_time_step_during_heating: float = 1.0)
The upper limit of the time step that has been enforced in the heating stages. Default: 1.0 s

Parameters
max_time_step_during_heating – The maximum time step during heating [s]

set_max_volume_fraction_dissolve_time_step(max_volume_fraction_dissolve_time_step: float =
0.01)

Sets the maximum volume fraction of subcritical particles allowed to dissolve in one time step. Default:
0.01

Parameters
max_volume_fraction_dissolve_time_step – The maximum volume fraction of sub-
critical particles allowed to dissolve in one time step [-]

set_min_radius_nucleus_as_particle(min_radius_nucleus_as_particle: float = 5e-10)
The cut-off lower limit of precipitate radius. Default: 5.0E-10 m

Parameters
min_radius_nucleus_as_particle – The minimum radius of a nucleus to be considered
as a particle [m]

set_min_radius_points_per_magnitude(min_radius_points_per_magnitude: float = 100.0)
Sets the minimum number of grid points over one order of magnitude in radius. Default: 100.0
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Parameters
min_radius_points_per_magnitude – The minimum number of grid points over one or-
der of magnitude in radius [-]

set_pre_processing_option(preprocessing_option: PreProcessingOption)
Sets the option for enabling pre-processing equilibrium data as a function of temperature. This can be
extended to include incipient melting where the incipient melting temperature is approximated for each
phase. If the temperature exceeds the incipient melting temperature, the precipitates are removed from the
system.

Parameters
preprocessing_option – Specifies if the preprocessing is either turned off, enabled, or
enabled with incipient melting.

set_radius_points_per_magnitude(radius_points_per_magnitude: float = 150.0)
Sets the number of grid points over one order of magnitude in radius. Default: 150.0

Parameters
radius_points_per_magnitude – The number of grid points over one order of magnitude
in radius [-]

set_rel_radius_change_class_collision(rel_radius_change_class_collision: float = 0.5)
Sets the relative radius change for avoiding class collision. Default: 0.5

Parameters
rel_radius_change_class_collision – The relative radius change for avoiding class
collision [-]

class tc_python.precipitation.ParticleSizeDistribution

Bases: object

Represents the state of a microstructure evolution at a certain time including its particle size distribution, com-
position and overall phase fraction.

add_radius_and_number_density(radius: float, number_density: float)
Adds a radius and number density pair to the particle size distribution.

Parameters
• radius – The radius [m]

• number_density – The number of particles per unit volume per unit length [m^-4]

Returns
This ParticleSizeDistribution object

set_initial_composition(element_name: str, composition_value: float)
Sets the initial precipitate composition.

Parameters
• element_name – The name of the element

• composition_value – The composition value [composition unit defined for the calcula-
tion]

Returns
This ParticleSizeDistribution object

set_volume_fraction_of_phase_type(volume_fraction_of_phase_type_enum:
VolumeFractionOfPhaseType)

Sets the type of the phase fraction or percentage. Default: By default volume fraction is used.
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Parameters
volume_fraction_of_phase_type_enum – Specifies if volume percent or fraction is used

Returns
This ParticleSizeDistribution object

set_volume_fraction_of_phase_value(value: float)
Sets the overall volume fraction of the phase (unit based on the setting of
set_volume_fraction_of_phase_type()).

Parameters
value – The volume fraction 0.0 - 1.0 or percent value 0 - 100

Returns
This ParticleSizeDistribution object

class tc_python.precipitation.PreProcessingOption(value)
Bases: Enum

Options for preprocessing.

OFF = 0

By default, the equilibrium properties are not characterized prior to a simulation.

ON = 1

The equilibrium properties are characterized as a function of temperature prior to the simulation.

ON_WITH_INCIPIENT_MELTING = 2

The equilibrium properties are characterized as a function of temperature, and the approximate incipient
melting temperatures are determined for each precipitate phase.

class tc_python.precipitation.PrecipitateElasticProperties

Bases: object

Represents the elastic transformation strain of a certain precipitate class.

Note: This class is only relevant if the option TransformationStrainCalculationOption.USER_DEFINED
has been chosen using PrecipitatePhase.set_transformation_strain_calculation_option(). The
elastic strain can only be considered for non-spherical precipitates.

set_e11(e11: float)
Sets the elastic strain tensor component e11. Default: 0.0

Parameters
e11 – The elastic strain tensor component e11

Returns
This PrecipitateElasticProperties object

set_e12(e12: float)
Sets the strain tensor component e12. Default: 0.0

Parameters
e12 – The elastic strain tensor component e12

Returns
This PrecipitateElasticProperties object

68 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

set_e13(e13: float)
Sets the elastic strain tensor component e13. Default: 0.0

Parameters
e13 – The elastic strain tensor component e13

Returns
This PrecipitateElasticProperties object

set_e22(e22: float)
Sets the elastic strain tensor component e22. Default: 0.0

Parameters
e22 – The elastic strain tensor component e22

Returns
This PrecipitateElasticProperties object

set_e23(e23: float)
Sets the elastic strain tensor component e23. Default: 0.0

Parameters
e23 – The elastic strain tensor component e23

Returns
This PrecipitateElasticProperties object

set_e33(e33: float)
Sets the elastic strain tensor component e33. Default: 0.0

Parameters
e33 – The elastic strain tensor component e33

Returns
This PrecipitateElasticProperties object

class tc_python.precipitation.PrecipitateMorphology(value)
Bases: Enum

Available precipitate morphologies.

CUBOID = 3

Cuboidal precipitates, only available for bulk nucleation.

NEEDLE = 1

Needle-like precipitates, only available for bulk nucleation.

PLATE = 2

Plate-like precipitates, only available for bulk nucleation.

SPHERE = 0

Spherical precipitates, this is the default morphology.

class tc_python.precipitation.PrecipitatePhase(precipitate_phase_name: str)
Bases: object

Represents a certain precipitate class (i.e. a group of precipitates with the same phase and settings).

disable_calculate_aspect_ratio_from_elastic_energy()

Disables the automatic calculation of the aspect ratio from the elastic energy of the phase.

6.1. Calculations 69



TC-Python Documentation, Release 2025b

Returns
This PrecipitatePhase object

Note: If you use this method, you are required to set the aspect ratio explicitly using the method
set_aspect_ratio_value().

Default: This is the default setting (with an aspect ratio of 1.0).

disable_driving_force_approximation()

Disables driving force approximation for this precipitate class. Default: Driving force approximation is
disabled.

Returns
This PrecipitatePhase object

enable_calculate_aspect_ratio_from_elastic_energy()

Enables the automatic calculation of the aspect ratio from the elastic energy of the phase. Default: The
aspect ratio is set to a value of 1.0.

Returns
This PrecipitatePhase object

enable_driving_force_approximation()

Enables driving force approximation for this precipitate class. This approximation is often required when
simulating precipitation of multiple particles that use the same phase description. E.g. simultaneous pre-
cipitation of a Metal-Carbide(MC) and Metal-Nitride(MN) if configured as different composition sets of
the same phase FCC_A1. Default: Driving force approximation is disabled.

Returns
This PrecipitatePhase object

Tip: Use this if simulations with several compositions sets of the same phase cause problems.

set_alias(alias: str)
Sets an alias string that can later be used to get values from a calculated result. Typically used when having
the same phase for several precipitates, but with different nucleation sites. For example two precipitates of
the phase M7C3 with nucleation sites in ‘Bulk’ and at ‘Dislocations’. The alias can be used instead of the
phase name when retrieving simulated results.

Parameters
alias – The alias string for this class of precipitates

Returns
This PrecipitatePhase object

Note: Typically used when having using the same precipitate phase, but with different settings in the same
calculation.

set_aspect_ratio_value(aspect_ratio_value: float)
Sets the aspect ratio of the phase. Default: An aspect ratio of 1.0.

Parameters
aspect_ratio_value – The aspect ratio value
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Returns
This PrecipitatePhase object

Note: Only relevant if disable_calculate_aspect_ratio_from_elastic_energy() is used (which
is the default).

set_gibbs_energy_addition(gibbs_energy_addition: float)
Sets a Gibbs energy addition to the Gibbs energy of the phase. Default: 0,0 J/mol

Parameters
gibbs_energy_addition – The Gibbs energy addition [J/mol]

Returns
This PrecipitatePhase object

set_interfacial_energy(interfacial_energy: Union[str, float])
Sets the interfacial energy. Default: If the interfacial energy is not set, it is automatically calculated using
a broken-bond model.

Parameters
interfacial_energy – A float for the interfacial energy [J/m^2] or a string containing a
particle size and/or temperature dependent function.

Returns
This PrecipitatePhase object

Note: If this method is not called, the calculated interfacial energy shall be used. The calculation of the
interfacial energy using a broken-bond model is based on the assumption of an interface between a bcc-
and a fcc-crystal structure with (110) and (111) lattice planes regardless of the actual phases.

A constant float value can be entered. Alternatively, a string can be given describing a function capturing
the desired dependency on size and/or temperature. The size is given in terms of radius “r” with units of
meters. Temperature is defined by “T” and has units of Kelvin.

For example, a smooth step function from 0.05 to 0.11 with the transition at 3nm, this is the function:
“(0.05+0.03) + 0.03*erf((r-3E-9)/1e-9)”

Search the Thermo-Calc help for “Operators and Functions” for a list of operators you can use.

set_interfacial_energy_estimation_prefactor(interfacial_energy_estimation_prefactor: float)
Sets the interfacial energy prefactor. Default: Prefactor of 1.0 (only relevant if the interfacial energy is
automatically calculated).

Parameters
interfacial_energy_estimation_prefactor – The prefactor for the calculated inter-
facial energy

Returns
This PrecipitatePhase object

Note: The interfacial energy prefactor is an amplification factor for the automatically calculated interfacial
energy. Example: interfacial_energy_estimation_prefactor = 2.5 => 2.5 * calculated interfacial energy
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set_molar_volume(volume: float)
Sets the molar volume of the precipitate phase. Default: The molar volume obtained from the database. If
no molar volume information is present in the database, a value of 7.0e-6 m^3/mol is used.

Parameters
volume – The molar volume [m^3/mol]

Returns
This PrecipitatePhase object

set_nucleation_at_dislocations(number_density=-1)
Activates nucleation at dislocations for this class of precipitates. Calling the method overrides any other
nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is chosen.

Parameters
number_density – Number density of nucleation sites. If not set, the value is calculated
based on the matrix settings (grain size, dislocation density) [m^-3].

Returns
This PrecipitatePhase object

set_nucleation_at_grain_boundaries(wetting_angle: float = 90.0, number_density: float = -1)
Activates nucleation at grain boundaries for this class of precipitates. Calling the method overrides any
other nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is
chosen.

Parameters
• wetting_angle – If not set, a default value of 90 degrees is used

• number_density – Number density of nucleation sites. If not set, the value is calculated
based on the matrix settings (grain size) [m^-3].

Returns
This PrecipitatePhase object

set_nucleation_at_grain_corners(wetting_angle: float = 90, number_density: float = -1)
Activates nucleation at grain corners for this class of precipitates. Calling the method overrides any other
nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is chosen.

Parameters
• wetting_angle – If not set, a default value of 90 degrees is used]

• number_density – Number density of nucleation sites. If not set, the value is calculated
based on the matrix settings (grain size) [m^-3].

Returns
This PrecipitatePhase object

set_nucleation_at_grain_edges(wetting_angle=90, number_density=-1)
Activates nucleation at the grain edges for this class of precipitates. Calling the method overrides any other
nucleation setting for this class of precipitates. Default: If not set, by default bulk nucleation is chosen.

Parameters
• wetting_angle – If not set, a default value of 90 degrees is used

• number_density – Number density of nucleation sites. If not set, the value is calculated
based on the matrix settings (grain size) [m^-3].

Returns
This PrecipitatePhase object
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set_nucleation_in_bulk(number_density: float = -1.0)
Activates nucleation in the bulk for this class of precipitates. Calling the method overrides any other nu-
cleation setting for this class of precipitates. Default: This is the default setting (with an automatically
calculated number density).

Parameters
number_density – Number density of nucleation sites. If not set, the value is calculated
based on the matrix settings (molar volume) [m^-3]

Returns
This PrecipitatePhase object

set_phase_boundary_mobility(phase_boundary_mobility: float)
Sets the phase boundary mobility. Default: 10.0 m^4/(Js).

Parameters
phase_boundary_mobility – The phase boundary mobility [m^4/(Js)]

Returns
This PrecipitatePhase object

set_precipitate_morphology(precipitate_morphology_enum: PrecipitateMorphology)
Sets the precipitate morphology. Default: PrecipitateMorphology.SPHERE

Parameters
precipitate_morphology_enum – The precipitate morphology

Returns
This PrecipitatePhase object

set_trans_interface_mobility_adjustment(element: str = 'all', prefactor: float = 1.0,
activation_energy: float = 0.0)

Trans-interface mobility adjustment Only relevant when growth rate model is PE Automatic A value that
adds to the activation energy of mobility data from the database.

Parameters
• element – The element to apply the adjustment for. If “all” is given, adjustment will apply

to all elements.

• prefactor – A parameter that multiplies to the mobility data from a database. The value
scales the mobility by a constant amount. This results in the trans-interface mobility that
controls the kinetics of Para-Equilibrium to Ortho-Equilibrium transition.

• activation_energy – A value that adds to the activation energy of mobility data from
a database.It scales the mobility by a temperature dependent amount. Similar usage as
trans-interface mobility adjustment prefactor. [J/mol]

set_transformation_strain_calculation_option(transformation_strain_calculation_option_enum:
TransformationStrainCalculationOption)

Sets the transformation strain calculation option. Default: TransformationStrainCalculationOption.
DISREGARD.

Parameters
transformation_strain_calculation_option_enum – The chosen option

Returns
This PrecipitatePhase object
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set_zener_pinning_parameters(cutoff_size: float = 7e-07, kinetic_prefactor: float = 0.5, exponent: float
= 0.93)

These parameters are only relevant when zener pinning is enabled in the matrix phase

Parameters
• cutoff_size – Precipitates with radius smaller than this value are neglected in pinning

force calculation.

• kinetic_prefactor – Dimensionless kinetic coefficient in Zener equation.

• exponent – Exponent of precipitate volume fraction in Zener equation.

Returns
This PrecipitatePhase object

with_elastic_properties(elastic_properties: PrecipitateElasticProperties)
Sets the elastic properties. Default: The elastic transformation strain is disregarded by default.

Parameters
elastic_properties – The elastic properties object

Returns
This PrecipitatePhase object

Note: This method has only an effect if the option TransformationStrainCalculationOption.
USER_DEFINED is chosen using the method set_transformation_strain_calculation_option().

with_growth_rate_model(growth_rate_model_enum: GrowthRateModel)
Sets the growth rate model for the class of precipitates. Default: GrowthRateModel.SIMPLIFIED

Parameters
growth_rate_model_enum – The growth rate model

Returns
This PrecipitatePhase object

with_particle_size_distribution(particle_size_distribution: ParticleSizeDistribution)
Sets the initial particle size distribution for this class of precipitates. Default: If the initial particle size
distribution is not explicitly provided, the simulation will start from a supersaturated matrix.

Parameters
particle_size_distribution – The initial particle size distribution object

Returns
This PrecipitatePhase object

Tip: Use this option if you want to study the further evolution of an existing microstructure.

class tc_python.precipitation.PrecipitationCCTCalculation(calculation)
Bases: AbstractCalculation

Configuration for a Continuous-Cooling-Time (CCT) precipitation calculation.

calculate(timeout_in_minutes: float = 0.0)→ PrecipitationCalculationTTTorCCTResult
Runs the CCT diagram calculation.
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Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A PrecipitationCalculationTTTorCCTResult which later can be used to get specific
values from the calculated result

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

set_composition(element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit(). Default: Mole percent (CompositionUnit.MOLE_PERCENT)

Parameters
• element_name – The element

• value – The composition (fraction or percent depending on the composition unit)

Returns
This PrecipitationCCTCalculation object

set_composition_unit(unit_enum: CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit.MOLE_PERCENT).

Parameters
unit_enum – The new composition unit

Returns
This PrecipitationCCTCalculation object

set_cooling_rates(cooling_rates: List[float])
Sets all cooling rates for which the CCT diagram should be calculated.

Parameters
cooling_rates – A list of cooling rates [K/s]

Returns
This PrecipitationCCTCalculation object

set_max_temperature(max_temperature: float)
Sets maximum temperature of the CCT diagram.

Parameters
max_temperature – the maximum temperature [K]

Returns
This PrecipitationCCTCalculation object
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set_min_temperature(min_temperature: float)
Sets the minimum temperature of the CCT diagram.

Parameters
min_temperature – the minimum temperature [K]

Returns
This PrecipitationCCTCalculation object

stop_at_volume_fraction_of_phase(stop_criterion_value: float)
Sets the stop criterion as a volume fraction of the phase. This setting is applied to all phases.

Parameters
stop_criterion_value – the volume fraction of the phase (a value between 0 and 1)

Returns
This PrecipitationCCTCalculation object

with_matrix_phase(matrix_phase: MatrixPhase)
Sets the matrix phase.

Parameters
matrix_phase – The matrix phase

Returns
This PrecipitationCCTCalculation object

with_numerical_parameters(numerical_parameters: NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults are be used.

Parameters
numerical_parameters – The parameters

Returns
This PrecipitationCCTCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PrecipitationCCTCalculation object

class tc_python.precipitation.PrecipitationCalculationResult(result)
Bases: AbstractResult

Result of a precipitation calculation. This can be used to query for specific values.

save_to_disk(path: str)
Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later
be loaded with load_result_from_disk()
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Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this PrecipitationCalculationResult object

class tc_python.precipitation.PrecipitationCalculationSingleResult(result)
Bases: PrecipitationCalculationResult

Result of a isothermal or non-isothermal precipitation calculation. This can be used to query for specific values.

Search the Thermo-Calc help for definitions of the axis variables, e.g. search isothermal variables or non-
isothermal variables.

get_aspect_ratio_distribution_for_particle_length_of(precipitate_id: str, time: float)→
[List[float], List[float]]

Returns the aspect ratio distribution of a precipitate in dependency of its mean particle length at a certain
time.

Only available if the morphology is set to PrecipitateMorphology.NEEDLE or
PrecipitateMorphology.PLATE.

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (mean particle length [m], aspect ratio)

get_aspect_ratio_distribution_for_radius_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the aspect ratio distribution of a precipitate in dependency of its mean radius at a certain time.

Only available if the morphology is set to PrecipitateMorphology.NEEDLE or
PrecipitateMorphology.PLATE.

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (mean radius [m], aspect ratio)

get_critical_radius_of(precipitate_id: str)→ [List[float], List[float]]
Returns the critical radius of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], critical radius [m])

get_cubic_factor_distribution_for_particle_length_of(precipitate_id: str, time: float)→
[List[float], List[float]]

Returns the cubic factor distribution of a precipitate in dependency of its mean particle length at a certain
time.

Only available if the morphology is set to PrecipitateMorphology.CUBOID.

Parameters
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• time – The time in seconds

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (particle length [m], cubic factor)

get_cubic_factor_distribution_for_radius_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the cubic factor distribution of a precipitate in dependency of its mean radius at a certain time.
Only available if the morphology is set to PrecipitateMorphology.CUBOID.

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (radius [m], cubic factor)

get_driving_force_of(precipitate_id: str)→ [List[float], List[float]]
Returns the (by R * T) normalized driving force of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (time [s], normalized driving force)

get_grain_critical_radius()→ [List[float], List[float]]
Returns the critical radius of grains in dependency of the time.

Returns
A tuple of two lists of floats (time [s], critical radius [m])

get_grain_mean_radius()→ [List[float], List[float]]
Returns the mean grain size of the matrix phase in dependency of the time.

Returns
A tuple of two lists of floats (time [s], mean radius [m])

get_grain_number_density()→ [List[float], List[float]]
Returns the grain number density (concentration) in dependency of the time.

Returns
A tuple of two lists of floats (time [s], grain number density [m^-3])

get_grain_number_density_distribution_for_length(time: float)→ [List[float], List[float]]
Returns the number density distribution of grains in terms of length at the requested time(s).

Parameters
time – The time [s]

Returns
A tuple of two lists of floats (grain length[m], number of grains per unit volume in a size class
[m^-3])

get_grain_number_density_distribution_for_radius(time: float)→ [List[float], List[float]]
Returns the number density distribution of a grains in terms of grain radius at the requested time(s).

Parameters
time – The time [s]

78 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

Returns
A tuple of two lists of floats (radius [m], number of grains per unit volume in a size class
[m^-3])

get_grain_size_distribution(time: float)→ [List[float], List[float]]
Returns the size distribution of the matrix phase in dependency of its grain radius at the requested time(s).

Parameters
time – The time [s]

Returns
A tuple of two lists of floats (grain radius[m], number density of grains[m^-4])

get_matrix_composition_in_mole_fraction_of(element_name: str)→ [List[float], List[float]]
Returns the matrix composition (as mole fractions) of a certain element in dependency of the time.

Parameters
element_name – The element

Returns
A tuple of two lists of floats (time [s], mole fraction)

get_matrix_composition_in_weight_fraction_of(element_name: str)→ [List[float], List[float]]
Returns the matrix composition (as weight fraction) of a certain element in dependency of the time.

Parameters
element_name – The element

Returns
A tuple of two lists of floats (time [s], weight fraction)

get_mean_aspect_ratio_of(precipitate_id: str)→ [List[float], List[float]]
Returns the mean aspect ratio of a precipitate in dependency of the time.

Only available if the morphology is set to PrecipitateMorphology.NEEDLE or
PrecipitateMorphology.PLATE.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (time [s], mean aspect ratio)

get_mean_cubic_factor_of(precipitate_id: str)→ [List[float], List[float]]
Returns the mean cubic factor of a precipitate in dependency of the time. Only available if the morphology
is set to PrecipitateMorphology.CUBOID.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (time [s], mean cubic factor)

get_mean_particle_length_of(precipitate_id: str)→ [List[float], List[float]]
Returns the mean particle length of a precipitate in dependency of the time.

Only available if the morphology is set to PrecipitateMorphology.NEEDLE or
PrecipitateMorphology.PLATE.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias
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Returns
A tuple of two lists of floats (time [s], mean particle length [m])

get_mean_radius_2d_of(precipitate_id: str)→ [List[float], List[float]]
Returns the mean radius of cross-sections taken through the dispersion in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], mean radius [m])

get_mean_radius_of(precipitate_id: str)→ [List[float], List[float]]
Returns the mean radius of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], mean radius [m])

get_normalized_grain_size_distribution(time: float)→ [List[float], List[float]]
Returns the normalized number density distribution with the grain radius normalized by the mean radius,
for the requested time(s).

Parameters
time – The time [s]

Returns
A tuple of two lists of floats (Normalized size, Probability)

get_normalized_number_density_distribution_2d_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the normalized number density distribution of a precipitate in terms of the radius of cross-sections
created by taking a plane through the dispersion, normalized by the mean radius of the cross-section, for
the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (Normalized size, Probability)

get_normalized_number_density_distribution_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the normalized number density distribution with the particle radius normalized by the mean radius,
for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (Normalized size, Probability)
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get_nucleation_rate_of(precipitate_id: str)→ [List[float], List[float]]
Returns the nucleation rate of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (time [s], nucleation rate [m^-3 s^-1)

get_number_density_distribution_2d_for_particle_length_of(precipitate_id: str, time: float)→
[List[float], List[float]]

Returns the number density distribution of a precipitate considering the radius of cross-sections created by
taking a plane through the dispersion, approximating the particles as spherical, for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (particle length[m], number of particles per unit area within a
size class [m^-2])

get_number_density_distribution_2d_for_radius_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the number density distribution of a precipitate considering the radius of cross-sections created by
taking a plane through the dispersion for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (radius [m], number of particles per unit area within a size class
[m^-2])

get_number_density_distribution_for_particle_length_of(precipitate_id: str, time: float)→
[List[float], List[float]]

Returns the number density distribution of a precipitate in terms of length for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (particle length[m], number of particles in the size class per unit
volume [m^-3])

get_number_density_distribution_for_radius_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the number density distribution of a precipitate in terms of radius for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias
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Returns
A tuple of two lists of floats (radius [m], number of particles in the size class per unit volume
[m^-3])

get_number_density_of(precipitate_id: str)→ [List[float], List[float]]
Returns the particle number density (concentration) of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], particle number density [m^-3])

get_precipitate_composition_in_mole_fraction_of(precipitate_id: str, element_name: str)→
[List[float], List[float]]

Returns the precipitate composition (as mole fractions) of a certain element in dependency of the time.

Parameters
• precipitate_id – The id of a precipitate can either be phase name or alias

• element_name – The element

Returns
A tuple of two lists of floats (time [s], mole fraction)

get_precipitate_composition_in_weight_fraction_of(precipitate_id: str, element_name: str)→
[List[float], List[float]]

Returns the precipitate composition (as weight fraction) of a certain element in dependency of the time.

Parameters
• precipitate_id – The id of a precipitate can either be phase name or alias

• element_name – The element

Returns
A tuple of two lists of floats (time [s], weight fraction)

get_size_distribution_2d_for_particle_length_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the size distribution of a precipitate considering the radius of cross-sections created by taking a
plane through the dispersion, approximating the particles as spherical, for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (particle length[m], number of particles per unit area per unit
length [m^-3])

get_size_distribution_2d_for_radius_of(precipitate_id: str, time: float)→ [List[float], List[float]]
Returns the 2d size distribution of a precipitate considering the radius of cross-sections created by taking a
plane through the dispersion for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

82 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

Returns
A tuple of two lists of floats (radius [m], number of particles per unit area per unit length
[m^-3])

get_size_distribution_for_particle_length_of(precipitate_id: str, time: float)→ [List[float],
List[float]]

Returns the size distribution of a precipitate in terms of length for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (particle length[m], number of particles per unit volume per unit
length [m^-4])

get_size_distribution_for_radius_of(precipitate_id: str, time: float)→ [List[float], List[float]]
Returns the size distribution of a precipitate in terms of radius for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (radius [m], number of particles per unit volume per unit length
[m^-4])

get_split_mean_radius_of(precipitate_id: str, isSectioned: bool)
Returns the mean radius of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], mean radius [m])

get_split_number_density_of(precipitate_id: str, isSectioned: bool)
Returns the mean radius of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], mean radius [m])

get_split_size_distribution_for_radius_of(precipitate_id: str, time: float, isSectioned: bool)
Returns the size distribution of a precipitate in terms of radius for the requested time(s).

Parameters
• time – The time [s]

• precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (radius [m], number of particles per unit volume per unit length
[m^-4])
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get_split_volume_or_area_fraction_of(precipitate_id: str, isSectioned: bool)
Returns the mean radius of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be phase name or alias

Returns
A tuple of two lists of floats (time [s], mean radius [m])

get_volume_fraction_of(precipitate_id: str)→ [List[float], List[float]]
Returns the volume fraction of a precipitate in dependency of the time.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (time [s], volume fraction)

class tc_python.precipitation.PrecipitationCalculationTTTorCCTResult(result)
Bases: PrecipitationCalculationResult

Result of a TTT or CCT precipitation calculation.

get_result_for_precipitate(precipitate_id: str)→ [List[float], List[float]]
Returns the calculated data of a TTT or CCT diagram for a certain precipitate.

Parameters
precipitate_id – The id of a precipitate can either be the phase name or an alias

Returns
A tuple of two lists of floats (time [s], temp [K])

class tc_python.precipitation.PrecipitationIsoThermalCalculation(calculation)
Bases: AbstractCalculation

Configuration for an isothermal precipitation calculation.

calculate(timeout_in_minutes: float = 0.0)→ PrecipitationCalculationSingleResult
Runs the isothermal precipitation calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A PrecipitationCalculationSingleResult which later can be used to get specific val-
ues from the calculated result

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data
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set_composition(element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit(). Default: Mole percent (CompositionUnit.MOLE_PERCENT)

Parameters
• element_name – The element

• value – The composition (fraction or percent depending on the composition unit)

Returns
This PrecipitationIsoThermalCalculation object

set_composition_unit(unit_enum: CompositionUnit = CompositionUnit.MOLE_PERCENT)
Sets the composition unit. Default: Mole percent (CompositionUnit.MOLE_PERCENT).

Parameters
unit_enum – The new composition unit

Returns
This PrecipitationIsoThermalCalculation object

set_simulation_time(simulation_time: float)
Sets the simulation time.

Parameters
simulation_time – The simulation time [s]

Returns
This PrecipitationIsoThermalCalculation object

set_temperature(temperature: float)
Sets the temperature for the isothermal simulation.

Parameters
temperature – the temperature [K]

Returns
This PrecipitationIsoThermalCalculation object

with_matrix_phase(matrix_phase: MatrixPhase)
Sets the matrix phase.

Parameters
matrix_phase – The matrix phase

Returns
This PrecipitationIsoThermalCalculation object

with_numerical_parameters(numerical_parameters: NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults are be used.

Parameters
numerical_parameters – The parameters

Returns
This PrecipitationIsoThermalCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).
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Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PrecipitationIsoThermalCalculation object

class tc_python.precipitation.PrecipitationNonIsoThermalCalculation(calculation)
Bases: AbstractCalculation

Configuration for a non-isothermal precipitation calculation.

calculate(timeout_in_minutes: float = 0.0)→ PrecipitationCalculationSingleResult
Runs the non-isothermal precipitation calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A PrecipitationCalculationSingleResult which later can be used to get specific val-
ues from the calculated result

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

set_composition(element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit(). Default: Mole percent (CompositionUnit.MOLE_PERCENT)

Parameters
• element_name – The element

• value – The composition (fraction or percent depending on the composition unit)

Returns
This PrecipitationIsoThermalCalculation object

set_composition_unit(unit_enum: CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit.MOLE_PERCENT).

Parameters
unit_enum – The new composition unit
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Returns
This PrecipitationIsoThermalCalculation object

set_simulation_time(simulation_time: float)
Sets the simulation time.

Parameters
simulation_time – The simulation time [s]

Returns
This PrecipitationNonThermalCalculation object

with_matrix_phase(matrix_phase: MatrixPhase)
Sets the matrix phase.

Parameters
matrix_phase – The matrix phase

Returns
This PrecipitationIsoThermalCalculation object

with_numerical_parameters(numerical_parameters: NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults are be used.

Parameters
numerical_parameters – The parameters

Returns
This PrecipitationIsoThermalCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PrecipitationNonThermalCalculation object

with_temperature_profile(temperature_profile: TemperatureProfile)
Sets the temperature profile to use with this calculation.

Parameters
temperature_profile – the temperature profile object (specifying time / temperature
points)

Returns
This PrecipitationNonThermalCalculation object

class tc_python.precipitation.PrecipitationTTTCalculation(calculation)
Bases: AbstractCalculation

Configuration for a TTT (Time-Temperature-Transformation) precipitation calculation.
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calculate(timeout_in_minutes: float = 0.0)→ PrecipitationCalculationTTTorCCTResult
Runs the TTT diagram calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A PrecipitationCalculationTTTorCCTResult which later can be used to get specific
values from the calculated result.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

set_composition(element_name: str, value: float)
Sets the composition of the elements. The unit for the composition can be changed using
set_composition_unit(). Default: Mole percent (CompositionUnit.MOLE_PERCENT)

Parameters
• element_name – The element

• value – The composition (fraction or percent depending on the composition unit)

Returns
This PrecipitationTTTCalculation object

set_composition_unit(unit_enum: CompositionUnit)
Sets the composition unit. Default: Mole percent (CompositionUnit.MOLE_PERCENT).

Parameters
unit_enum – The new composition unit

Returns
This PrecipitationTTTCalculation object

set_max_annealing_time(max_annealing_time: float)
Sets the maximum annealing time, i.e. the maximum time of the simulation if the stopping criterion is not
reached.

Parameters
max_annealing_time – the maximum annealing time [s]

Returns
This PrecipitationTTTCalculation object

set_max_temperature(max_temperature: float)
Sets the maximum temperature for the TTT diagram.

Parameters
max_temperature – the maximum temperature [K]
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Returns
This PrecipitationTTTCalculation object

set_min_temperature(min_temperature: float)
Sets the minimum temperature for the TTT diagram.

Parameters
min_temperature – the minimum temperature [K]

Returns
This PrecipitationTTTCalculation object

set_temperature_step(temperature_step: float)
Sets the temperature step for the TTT diagram. If not set, the default value is 10 K.

Parameters
temperature_step – the temperature step [K]

Returns
This PrecipitationTTTCalculation object

stop_at_percent_of_equilibrium_fraction(percentage: float)
Sets the stop criterion to a percentage of the overall equilibrium phase fraction, alternatively a required
volume fraction can be specified (using stop_at_volume_fraction_of_phase()).

Parameters
percentage – the percentage to stop at (value between 0 and 100)

Returns
This PrecipitationTTTCalculation object

stop_at_volume_fraction_of_phase(volume_fraction: float)
Sets the stop criterion as a volume fraction of the phase, alternatively a required percentage of the equi-
librium phase fraction can be specified (using stop_at_percent_of_equilibria_fraction()). Stop-
ping at a specified volume fraction is the default setting.

This setting is applied to all phases.

Parameters
volume_fraction – the volume fraction to stop at (a value between 0 and 1)

Returns
This PrecipitationTTTCalculation object

with_matrix_phase(matrix_phase: MatrixPhase)
Sets the matrix phase.

Parameters
matrix_phase – The matrix phase

Returns
This PrecipitationTTTCalculation object

with_numerical_parameters(numerical_parameters: NumericalParameters)
Sets the numerical parameters. If not specified, reasonable defaults are be used.

Parameters
numerical_parameters – The parameters

Returns
This PrecipitationTTTCalculation object
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with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PrecipitationTTTCalculation object

class tc_python.precipitation.TransformationStrainCalculationOption(value)
Bases: Enum

Options for calculating the transformation strain.

CALCULATE_FROM_MOLAR_VOLUME = 2

Calculates the transformation strain from the molar volume, obtains a purely dilatational strain.

DISREGARD = 1

Ignores the transformation strain, this is the default setting.

USER_DEFINED = 3

Transformation strain to be specified by the user.

class tc_python.precipitation.VolumeFractionOfPhaseType(value)
Bases: Enum

Unit of the volume fraction of a phase.

VOLUME_FRACTION = 6

Volume fraction (0 - 1), this is the default.
VOLUME_PERCENT = 5

Volume percent (0% - 100%).

6.1.4 Module “scheil”

class tc_python.scheil.CalculateSecondaryDendriteArmSpacing

Bases: ScheilBackDiffusion

Configures a secondary dendrite arm spacing calculation used by Scheil with back diffusion. The used equation
is c * cooling_rate^(-n) with c and n being provided either by the user or taken from the defaults.

disable_delta_ferrite_to_austenite_transition()

Turns off the delta ferrite BCC to austenite FCC transition.

Default: Delta ferrite to austenite transition is off. :return: This
CalculateSecondaryDendriteArmSpacing object
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enable_delta_ferrite_to_austenite_transition()

Turns on the delta ferrite BCC to austenite FCC transition.

Default: Delta ferrite to austenite transition is off. :return: This
CalculateSecondaryDendriteArmSpacing object

set_c(c: float = 5e-05)
Sets the scaling factor c in the governing equation c * cooling_rate^(-n).

Default: 50 µm

Parameters
c – The scaling factor [m]

Returns
This CalculateSecondaryDendriteArmSpacing object

set_cooling_rate(cooling_rate: float = 1.0)
Sets the cooling rate.

Default: 1.0 K/s

An increased value moves the result from equilibrium toward a Scheil-Gulliver calculation.

Parameters
cooling_rate – The cooling rate [K/s]

Returns
This CalculateSecondaryDendriteArmSpacing object

set_fast_diffusing_elements(element_names: List[str])
Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid
parts of the alloy.

Default: No fast-diffusing elements.

Parameters
element_names – The elements

Returns
This CalculateSecondaryDendriteArmSpacing object

set_n(n: float = 0.33)
Sets the exponent n in the governing equation c * cooling_rate^(-n).

Default: 0.33

Parameters
n – The exponent [-]

Returns
This CalculateSecondaryDendriteArmSpacing object

set_primary_phasename(primary_phase_name: str = 'AUTOMATIC')
Sets the name of the primary phase.

The primary phase is the phase where the back diffusion takes place. If AUTOMATIC is selected, the
program tries to find the phase which will give the most back diffusion. That behavior can be overridden
by selecting a specific primary phase.

Default: AUTOMATIC

Parameters
primary_phase_name – The phase name (or AUTOMATIC)
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Returns
This CalculateSecondaryDendriteArmSpacing object

class tc_python.scheil.ConstantSecondaryDendriteArmSpacing(secondary_dendrite_arm_spacing:
float = 5e-05)

Bases: ScheilBackDiffusion

Configures a constant secondary dendrite arm spacing used by Scheil with back diffusion. The secondary dendrite
arm spacing can either be provided by the user or taken from the defaults.

disable_delta_ferrite_to_austenite_transition()

Turns off the delta ferrite BCC to austenite FCC transition.

Default: Delta ferrite to austenite transition is off. :return: This
ConstantSecondaryDendriteArmSpacing object

enable_delta_ferrite_to_austenite_transition()

Turns on the delta ferrite BCC to austenite FCC transition.

Default: Delta ferrite to austenite transition is off. :return: This
ConstantSecondaryDendriteArmSpacing object

set_cooling_rate(cooling_rate: float = 1.0)
Sets the cooling rate.

Default: 1.0 K/s

An increased value moves the result from equilibrium toward a Scheil-Gulliver calculation.

Parameters
cooling_rate – The cooling rate [K/s]

Returns
This ConstantSecondaryDendriteArmSpacing object

set_fast_diffusing_elements(element_names: List[str])
Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid
parts of the alloy.

Default: No fast-diffusing elements.

Parameters
element_names – The elements

Returns
This ConstantSecondaryDendriteArmSpacing object

set_primary_phasename(primary_phase_name: str = 'AUTOMATIC')
Sets the name of the primary phase.

The primary phase is the phase where the back diffusion takes place. If AUTOMATIC is selected, the
program tries to find the phase which will give the most back diffusion. That behavior can be overridden
by selecting a specific primary phase.

Default: AUTOMATIC

Parameters
primary_phase_name – The phase name (or AUTOMATIC)

Returns
This ConstantSecondaryDendriteArmSpacing object
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class tc_python.scheil.InterfaceDrivingForceModel(value)
Bases: Enum

The interface driving force model (free energy change at the liquid/primary solid interface) that is used to evaluate
the migration speed in comparison with the maximum velocity.

DRIVING_ENERGY = 0

Using the overall free energy change. This is the default.
MIGRATION_ENERGY = 1

Uses free energy change due to migration, i.e. the overall free energy change excluding that contributes to
diffusion.

class tc_python.scheil.ScheilBackDiffusion

Bases: ScheilCalculationType

Configuration for back diffusion in the solid primary phase.

Warning: This feature has only effect on systems with diffusion data (typically a mobility database). If used
for a system without diffusion data, a normal Scheil calculation is done.

classmethod calculate_secondary_dendrite_arm_spacing()

Calculate the secondary dendrite arm spacing based on the following equation: c * cooling_rate^(-n)
with c and n being provided either by the user or taken from the defaults.

Use the methods provide by CalculateSecondaryDendriteArmSpacing to configure the parameters.

Returns
A CalculateSecondaryDendriteArmSpacing

classmethod constant_secondary_dendrite_arm_spacing(secondary_dendrite_arm_spacing: float =
5e-05)

Assuming constant secondary dendrite arm spacing, provided either by the user or taken from the defaults.

Default: 50 µm

Parameters
secondary_dendrite_arm_spacing – The dendrite arm spacing [m]

Returns
A ConstantSecondaryDendriteArmSpacing

class tc_python.scheil.ScheilCalculation(calculator)
Bases: AbstractCalculation

Configuration for a Scheil solidification calculation.

Note: Specify the settings, the calculation is performed with calculate().

calculate(timeout_in_minutes: float = 0.0)→ ScheilCalculationResult
Runs the Scheil calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.
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Returns
A ScheilCalculationResult which later can be used to get specific values from the sim-
ulation.

disable_global_minimization()

Disables global minimization.

Default: Enabled

Note: When enabled, a global minimization test is performed when an equilibrium is reached. This costs
more computer time but the calculations are more robust.

Returns
This ScheilCalculation object

enable_global_minimization()

Enables global minimization.

Default: Enabled

Note: When enabled, a global minimization test is performed when an equilibrium is reached. This costs
more computer time but the calculations are more robust.

Returns
This ScheilCalculation object

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

set_composition(component_name: str, value: float)
Sets the composition of a component. The unit for the composition can be changed using
set_composition_unit().

Default: Mole percent (CompositionUnit.MOLE_PERCENT)

Parameters
• component_name – The component

• value – The composition value [composition unit defined for the calculation]

Returns
This ScheilCalculation object
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set_composition_unit(unit_enum: CompositionUnit = CompositionUnit.MOLE_PERCENT)
Sets the composition unit.

Default: Mole percent (CompositionUnit.MOLE_PERCENT).

Parameters
unit_enum – The new composition unit

Returns
This ScheilCalculation object

set_start_temperature(temperature_in_kelvin: float = 2500.0)
Sets the start temperature.

Warning: The start temperature needs to be higher than the liquidus temperature of the alloy.

Default: 2500.0 K

Parameters
temperature_in_kelvin – The temperature [K]

Returns
This ScheilCalculation object

with_calculation_type(scheil_calculation_type: ScheilCalculationType)
Chooses a specific Scheil calculation.

• ClassicScheil for only setting fast diffusers.

• ScheilBackDiffusion enables back diffusion in the solid primary phase and optionally fast diffusers in
all solid phases.

• ScheilSoluteTrapping enables solute trapping in the solid primary phase.

Parameters
scheil_calculation_type – Type of Scheil calculation, either ScheilClassic, ScheilBack-
Diffusion or ScheilSoluteTrapping

Returns
This ScheilCalculation object

with_options(options: ScheilOptions)
Sets the Scheil simulation options.

Parameters
options – The Scheil simulation options

Returns
This ScheilCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.
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Parameters
system_modifications – The system modification to be performed

Returns
This ScheilCalculation object

class tc_python.scheil.ScheilCalculationResult(result)
Bases: AbstractResult

Result of a Scheil calculation.

get_solid_phase_with_largest_mole_fraction()→ str
Returns the name of the solid phase with the largest amount in terms of mole fraction at the end of the
Scheil simulation.

Returns
Phase name

get_stable_phases()→ List[str]
Returns all phases that were stable during a Scheil simulation.

Returns
The list of stable phases

get_values_grouped_by_quantity_of(x_quantity: Union[ScheilQuantity, str], y_quantity:
Union[ScheilQuantity, str], sort_and_merge: bool = True)→
Dict[str, ResultValueGroup]

Returns x-y-line data grouped by the multiple datasets of the specified quantities (for example in depen-
dency of phases or components). Use get_values_of() instead if you need no separation. The available
quantities can be found in the documentation of the factory class ScheilQuantity.

Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag `sort_and_merge` has been set (because they might be unsortable due to their
nature).

Parameters
• x_quantity – The first Scheil quantity (“x-axis”), Console Mode syntax strings can be

used as an alternative (for example “T”)

• y_quantity – The second Scheil quantity (“y-axis”), Console Mode syntax strings can be
used as an alternative (for example “NV”)

• sort_and_merge – If True, the data is sorted and merged into as few subsections as pos-
sible (divided by NaN)

Returns
Containing the ResultValueGroup dataset objects with their quantity labels as keys

get_values_grouped_by_stable_phases_of(x_quantity: Union[ScheilQuantity, str], y_quantity:
Union[ScheilQuantity, str], sort_and_merge: bool = True)
→ Dict[str, ResultValueGroup]

Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID +
FCC_A1”). Use get_values_of() instead if you need no separation. The available quantities can be
found in the documentation of the factory class ScheilQuantity.
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Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag `sort_and_merge` has been set (because they might be unsortable due to their
nature).

Parameters
• x_quantity – The first Scheil quantity (“x-axis”), Console Mode syntax strings can be

used as an alternative (for example “T”)

• y_quantity – The second Scheil quantity (“y-axis”), Console Mode syntax strings can be
used as an alternative (for example “NV”)

• sort_and_merge – If True, the data will be sorted and merged into as few subsections as
possible (divided by NaN)

Returns
Containing the ResultValueGroup dataset objects with their “stable phases” labels as keys

get_values_of(x_quantity: Union[ScheilQuantity, str], y_quantity: Union[ScheilQuantity, str])→
[List[float], List[float]]

Returns sorted x-y-line data without any separation. Use get_values_grouped_by_quantity_of() or
get_values_grouped_by_stable_phases_of() instead if you need such a separation. The available
quantities can be found in the documentation of the factory class ScheilQuantity.

Note: This method will always return sorted data without any NaN-values. In case of ambiguous quantities
(for example: CompositionOfPhaseAsWeightFraction(“FCC_A1”, “All”)) that can give data that is hard to
interpret. In such a case you need to choose the quantity in another way or use one of the other methods.

Parameters
• x_quantity – The first Scheil quantity (“x-axis”), Console Mode syntax strings can be

used as an alternative (for example “T”)

• y_quantity – The second Scheil quantity (“y-axis”), Console Mode syntax strings can be
used as an alternative (for example “NV”)

Returns
A tuple containing the x- and y-data in lists

save_to_disk(path: str)
Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later
be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in.

Returns
this ScheilCalculationResult object

class tc_python.scheil.ScheilCalculationType

Bases: object

Specific configuration for the different Scheil calculation types
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classmethod scheil_back_diffusion()

Configuration for back diffusion in the solid primary phase.

Warning: This feature has only effect on systems with diffusion data (typically a mobility database).
If used for a system without diffusion data, a normal Scheil calculation is done.

Returns
A ScheilBackDiffusion

classmethod scheil_classic()

Configuration for Classic Scheil with fast diffusers.

Returns
A ScheilClassic

classmethod scheil_solute_trapping()

Configures the Scheil solute trapping settings. The used solidification speed equation is Scanning speed *
cos(angle) with Scanning speed and angle being provided either by the user or taken from the defaults.

Returns
A ScheilSoluteTrapping

class tc_python.scheil.ScheilClassic

Bases: ScheilCalculationType

Configuration for Classic Scheil with fast diffusers.

disable_delta_ferrite_to_austenite_transition()

Turns off the delta ferrite BCC to austenite FCC transition.

Default: Delta ferrite to austenite transition is off. :return: This ScheilClassic object

enable_delta_ferrite_to_austenite_transition()

Turns on the delta ferrite BCC to austenite FCC transition.

Default: Delta ferrite to austenite transition is off. :return: This ScheilClassic object

set_fast_diffusing_elements(element_names: List[str])
Sets elements as fast diffusing. This allows redistribution of these elements in both the solid and liquid
parts of the alloy.

Default: No fast-diffusing elements.

Parameters
element_names – The elements

Returns
This ScheilClassic object

class tc_python.scheil.ScheilOptions

Bases: object

Options for the Scheil simulation.

calculate_from_gas()

Calculates the evaporation temperature if a gas phase is selected in the system, and then calculates equilibria
in the gas+liquid and liquid regions until liquidus temperature is reached.

Default: Calculation starts from liquidus temperature.
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Returns
This ScheilOptions object

calculate_from_liquidus()

Solidification calculation starting from the liquidus temperature. Liquid properties between start tempera-
ture and liquidus are not obtainable.

Default: Calculation starts from liquidus temperature.

Returns
This ScheilOptions object

calculate_from_start_temperature()

Calculation of equilibria from start temperature at 50 K intervals until liquidus temperature is reached, using
the temperature defined with ScheilCalculation.set_start_temperature(). This option makes it
possible to obtain properties of the liquid phase before the solidification starts.

Default: Calculation starts from liquidus temperature.

Returns
This ScheilOptions object

calculate_to_end_of_scheil()

Stops the calculation when the Scheil calculation is finished.

Default: Calculation stops when the Scheil calculation is finished.

Returns
This ScheilOptions object

calculate_to_temperature_below_solidus(number_of_steps: int = 50, final_temperature: float =
298.15)

Calculates properties in the solid state, for the phase compositions and fractions at the end of the Scheil
calculation.

Default: Calculation stops when the Scheil calculation is finished.

Parameters
• number_of_steps – Calculates properties for the given number of temperatures, down to

the final temperature.

• final_temperature – The final (lowest) temperature where the calculation is performed.

Returns
This ScheilOptions object

disable_approximate_driving_force_for_metastable_phases()

Disables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This ScheilOptions object
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disable_control_step_size_during_minimization()

Disables stepsize control during minimization (non-global).

Default: Enabled

Returns
This ScheilOptions object

disable_equilibrium_solidification_calculation()

Skips the property (one axis) diagram calculation of solidification under equilibrium conditions, before the
Scheil solidification calculation starts.

In general it is not necessary to perform this calculation.

Default: Disabled. The equilibrium solidification calculation is skipped.

Returns
This ScheilOptions object

disable_evaporation_property_calculation()

Disables calculation of evaporation properties.

Default: Disabled. The evaporation properties are not calculated.

Returns
This ScheilOptions object

disable_force_positive_definite_phase_hessian()

Disables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This ScheilOptions object

enable_approximate_driving_force_for_metastable_phases()

Enables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This ScheilOptions object

enable_control_step_size_during_minimization()

Enables stepsize control during normal minimization (non-global).

Default: Enabled

Returns
This ScheilOptions object
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enable_equilibrium_solidification_calculation()

Performs a property (one axis) diagram calculation of solidification under equilibrium conditions, before
the Scheil solidification calculation starts, in the same way as is typically done in graphical and console
mode.

In general it is not necessary to perform this calculation.

Default: Disabled. The equilibrium solidification calculation is skipped.

Returns
This ScheilOptions object

enable_evaporation_property_calculation()

Enables calculation of the properties molar mass of gas, driving force for evaporation and evaporation
enthalpy. The calculation requires the gas phase to be selected.

Default: Disabled. The evaporation properties are not calculated.

Returns
This ScheilOptions object

enable_force_positive_definite_phase_hessian()

Enables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This ScheilOptions object

set_gas_phase(phase_name: str = 'GAS')
Sets the phase used as the gas phase.

Default: The phase “GAS”.

Parameters
phase_name – The phase name

Returns
This ScheilOptions object

set_global_minimization_max_grid_points(max_grid_points: int = 2000)
Sets the maximum number of grid points in global minimization. ** Only applicable if global minimization
is actually used**.

Default: 2000 points

Parameters
max_grid_points – The maximum number of grid points

Returns
This ScheilOptions object

set_global_minimization_test_interval(global_test_interval: int = 10)
Sets the interval for the global test.

Default: 10

Parameters
global_test_interval – The global test interval
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Returns
This ScheilOptions object

set_liquid_phase(phase_name: str = 'LIQUID')
Sets the phase used as the liquid phase.

Default: The phase “LIQUID”.

Parameters
phase_name – The phase name

Returns
This ScheilOptions object

set_max_no_of_iterations(max_no_of_iterations: int = 500)
Set the maximum number of iterations.

Default: max. 500 iterations

Note: As some models give computation times of more than 1 CPU second/iteration, this number is also
used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used.

Parameters
max_no_of_iterations – The max. number of iterations

Returns
This ScheilOptions object

set_required_accuracy(accuracy: float = 1e-06)
Sets the required relative accuracy.

Default: 1.0E-6

Note: This is a relative accuracy, and the program requires that the relative difference in each variable must
be lower than this value before it has converged. A larger value normally means fewer iterations but less
accurate solutions. The value should be at least one order of magnitude larger than the machine precision.

Parameters
accuracy – The required relative accuracy

Returns
This ScheilOptions object

set_smallest_fraction(smallest_fraction: float = 1e-12)
Sets the smallest fraction for constituents that are unstable.

It is normally only in the gas phase that you can find such low fractions.

The default value for the smallest site-fractions is 1E-12 for all phases except for IDEAL phase with one
sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as
1E-30.

Parameters
smallest_fraction – The smallest fraction for constituents that are unstable

Returns
This ScheilOptions object
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set_temperature_step(temperature_step_in_kelvin: float = 1.0)
Sets the temperature step. Decreasing the temperature step increases the accuracy, but the default value is
usually adequate.

Default step: 1.0 K

Parameters
temperature_step_in_kelvin – The temperature step [K]

Returns
This ScheilOptions object

terminate_on_fraction_of_liquid_phase(fraction_to_terminate_at: float = 0.01)
Sets the termination condition to a specified remaining fraction of liquid phase.

Default: Terminates at 0.01 fraction of liquid phase.

Note: Either the termination criterion is set to a temperature or fraction of liquid limit, both together are
not possible.

Parameters
fraction_to_terminate_at – the termination fraction of liquid phase (value between 0
and 1)

Returns
This ScheilOptions object

terminate_on_temperature(temperature_in_kelvin: float)
Sets the termination condition to a specified temperature.

Default: Terminates at 0.01 fraction of liquid phase, i.e. not at a specified temperature.

Note: Either the termination criterion is set to a temperature or fraction of liquid limit, both together are
not possible.

Parameters
temperature_in_kelvin – the termination temperature [K]

Returns
This ScheilOptions object

class tc_python.scheil.ScheilSoluteTrapping

Bases: ScheilCalculationType

Configures the Scheil solute trapping settings. The used solidification speed equation is Scanning speed *
cos(angle) with Scanning speed and angle being provided either by the user or taken from the defaults.

set_angle(alpha: float = 45.0)
Sets the transformation angle alpha between the solid/liquid boundary and laser scanning direction.

Default: 45.0

Parameters
alpha – The transformation angle [degree]
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Returns
This ScheilSoluteTrapping object

set_interface_driving_force_model(model: InterfaceDrivingForceModel =
InterfaceDrivingForceModel.DRIVING_ENERGY)

Sets the interface driving force model (free energy change at the liquid/primary solid interface) that is used
to evaluate the migration speed in comparison with the maximum velocity.

It can be the DRIVING_ENERGY or MIGRATION_ENERGY model.

Default: DRIVING_ENERGY

Parameters
model – The interface driving force model

Returns
This ScheilSoluteTrapping object

set_maximum_velocity_for_infinite_driving_force(maximum_velocity: float = 2000)
Sets the maximum migration speed of the liquid/primary solid interface when the driving force is infinite.

Default: 2000 m/s

Parameters
maximum_velocity – The maximum migration speed [m/s]

Returns
This ScheilSoluteTrapping object

set_primary_phasename(primary_phase_name: str = 'AUTOMATIC')
Sets the name of the primary phase.

The primary phase is the phase where solute trapping takes place. A necessary condition for this phase is
that the phase definition contains all of the elements that are chosen in the system. When AUTOMATIC is
selected, the program tries to find a suitable primary phase that fills this condition.

Default: AUTOMATIC

Parameters
primary_phase_name – The phase name (or AUTOMATIC)

Returns
This ScheilSoluteTrapping object

set_scanning_speed(scanning_speed: float = 1.0)
Sets the scanning speed.

Default: 1 m/s

Parameters
scanning_speed – The scaling factor [m/s]

Returns
This ScheilSoluteTrapping object

set_solute_trapping_model(model: SoluteTrappingModel = SoluteTrappingModel.AZIZ)
Sets the solute trapping model for the Scheil calculation.

The model is used to calculate the relation between migration speed and solute partitioning at the liq-
uid/primary solid interface, developed by either Aziz or Hillert.

Default: AZIZ
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Parameters
model – The solute trapping model

Returns
This ScheilSoluteTrapping object

set_trans_interface_diffusivity_for(element: str, pre_factor: float = 5e-09, activation_energy: float
= 0.0)

Sets the solute diffusivity across the interface between liquid and primary dendrite phase for a specified
element, defined by an Arrhenius-type equation.

Default: 5.0e-9 m**2/s for the pre-factor and 0 J/mol for the activation energy

Note: If the trans-interface diffusivity had previously been set for all elements, this setting will be com-
pletely removed.

Parameters
• element – The element for which the trans-interface diffusivity is to be set

• pre_factor – The pre-exponential factor in the Arrhenius equation for the trans-interface
diffusivity [m**2/s]

• activation_energy – The activation energy in the Arrhenius equation for the trans-
interface diffusivity [J/mol]

Returns
This ScheilSoluteTrapping object

set_trans_interface_diffusivity_for_all_elements(pre_factor: float = 5e-09, activation_energy:
float = 0.0)

Sets the solute diffusivity across the interface between liquid and primary dendrite phase for all elements,
defined by an Arrhenius-type equation.

Default: 5.0e-9 m**2/s for the pre-factor and 0 J/mol for the activation energy

Parameters
• pre_factor – The pre-exponential factor in the Arrhenius equation for the trans-interface

diffusivity [m**2/s].

• activation_energy – The activation energy in the Arrhenius equation for the trans-
interface diffusivity [J/mol].

Returns
This ScheilSoluteTrapping object

class tc_python.scheil.SoluteTrappingModel(value)
Bases: Enum

The solute trapping model to calculate the relation between migration speed and solute partitioning at the liq-
uid/primary solid interface.

AZIZ = 0

The solute trapping model developed by Aziz. This is the default.
HILLERT = 1

The solute trapping model developed by Hillert model.
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6.1.5 Module “step_or_map_diagrams”

class tc_python.step_or_map_diagrams.AbstractAxisType

Bases: object

The abstract base class for all axis types.

class tc_python.step_or_map_diagrams.AbstractPhaseDiagramCalculation(calculator)
Bases: AbstractCalculation

Abstract configuration required for a property diagram calculation.

Note: This is an abstract class that cannot be used directly.

add_initial_equilibrium(initial_equilibrium: InitialEquilibrium)

Add initial equilibrium start points from which a phase diagram is calculated.

Scans along the axis variables and generates start points when the scan procedure crosses a phase boundary.

It may take a little longer to execute than using the minimum number of start points, as some lines may
be calculated more than once. But the core remembers all node points and subsequently stops calculations
along a line when it finds a known node point.

It is also possible to create a sequence of start points from one initial equilibria.

Parameters
initial_equilibrium – The initial equilibrium

Returns
This PhaseDiagramCalculation object

abstract calculate(keep_previous_results: bool = False, timeout_in_minutes: float = 0.0)→
PhaseDiagramResult

disable_global_minimization()

Disables global minimization.

Default: Enabled

Returns
This PhaseDiagramCalculation object

dont_keep_default_equilibria()

Do not keep the initial equilibria added by default.

This is only relevant in combination with add_initial_equilibrium().

This is the default behavior.

Returns
This PhaseDiagramCalculation object

enable_global_minimization()

Enables global minimization.

Default: Enabled

Returns
This PhaseDiagramCalculation object
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get_components()→ List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns
The component names

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

keep_default_equilibria()

Keep the initial equilibria added by default. This is only relevant in combination with
add_initial_equilibrium().

Default behavior is to not keep default equilibria.

Returns
This PhaseDiagramCalculation object

remove_all_initial_equilibria()

Removes all previously added initial equilibria.

Returns
This PhaseDiagramCalculation object

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This PhaseDiagramCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.
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Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This PhaseDiagramCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PhaseDiagramCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This PhaseDiagramCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This PhaseDiagramCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PhaseDiagramCalculation object
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with_options(options: PhaseDiagramOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This PhaseDiagramCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This PhaseDiagramCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed
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Returns
This PhaseDiagramCalculation object

class tc_python.step_or_map_diagrams.AbstractPropertyDiagramCalculation(calculator)
Bases: AbstractCalculation

Abstract configuration required for a property diagram calculation.

Note: This is an abstract class that cannot be used directly.

abstract calculate(keep_previous_results: bool = False, timeout_in_minutes: float = 0.0)

disable_global_minimization()

Disables global minimization.

Default: Enabled

Returns
This PropertyDiagramCalculation object

disable_step_separate_phases()

Disables step separate phases. This is the default setting.

Returns
This PropertyDiagramCalculation object

enable_global_minimization()

Enables global minimization.

Default: Enabled

Returns
This PropertyDiagramCalculation object

enable_step_separate_phases()

Enables step separate phases.

Default: By default separate phase stepping is disabled

Note: This is an advanced option, it is used mostly to calculate how the Gibbs energy for a number of
phases varies for different compositions. This is particularly useful to calculate Gibbs energies for complex
phases with miscibility gaps and for an ordered phase that is never disordered (e.g. SIGMA-phase, G-phase,
MU-phase, etc.).

Returns
This PropertyDiagramCalculation object

get_components()→ List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns
The component names
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get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This PropertyDiagramCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This PropertyDiagramCalculation object

6.1. Calculations 111



TC-Python Documentation, Release 2025b

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PropertyDiagramCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This PropertyDiagramCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This PropertyDiagramCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PropertyDiagramCalculation object

with_options(options: PropertyDiagramOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This PropertyDiagramCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.
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By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This PropertyDiagramCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PropertyDiagramCalculation object

class tc_python.step_or_map_diagrams.AxisType

Bases: AbstractAxisType

Factory class providing objects for configuring a logarithmic or linear axis by using AxisType.linear() or
AxisType.logarithmic().

classmethod linear()

Creates an object for configuring a linear calculation axis.

Default: A minimum number of 40 steps.

Note: The returned object can be configured regarding the maximum step size or the minimum number
of steps on the axis.

6.1. Calculations 113



TC-Python Documentation, Release 2025b

Returns
A new Linear object

classmethod logarithmic()

Creates an object for configuring a logarithmic calculation axis.

Default: A scale factor of 1.1

Note: The returned object can be configured regarding the scale factor.

Returns
A new Logarithmic object

class tc_python.step_or_map_diagrams.CalculationAxis(quantity: Union[ThermodynamicQuantity,
str])

Bases: object

A calculation axis used for property and phase diagram calculations.

Note: A calculation axis is defining the varied condition and the range of variation. It is the same concept as in
Thermo-Calc Graphical Mode or Console Mode.

Default: A Linear axis with a minimum number of 40 steps

set_max(max: float)
Sets the maximum quantity value of the calculation axis.

There is no default value set, it always needs to be defined.
Parameters
max – The maximum quantity value of the axis [unit according to the axis quantity]

Returns
This CalculationAxis object

set_min(min: float)
Sets the minimum quantity value of the calculation axis.

There is no default value set, it always needs to be defined.
Parameters
min – The minimum quantity value of the axis [unit according to the axis quantity]

Returns
This CalculationAxis object

set_start_at(at: float)
Sets the starting point of the calculation on the axis.

Default: The default starting point is the center between the minimum and maximum quantity value

Parameters
at – The starting point on the axis [unit according to the axis quantity]

Returns
This CalculationAxis object
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with_axis_type(axis_type: AxisType)
Sets the type of the axis.

Default: A Linear axis with a minimum number of 40 steps

Parameters
axis_type – The axis type (linear or logarithmic)

Returns
This CalculationAxis object

class tc_python.step_or_map_diagrams.Direction(value)
Bases: Enum

An enumeration.

DECREASE_FIRST_AXIS = 3

DECREASE_SECOND_AXIS = 4

INCREASE_FIRST_AXIS = 0

INCREASE_SECOND_AXIS = 1

class tc_python.step_or_map_diagrams.InitialEquilibrium(first_axis: float, second_axis: float)
Bases: object

add_equilibria_at_all_phase_changes()

This generates one start point for each set of phase change in the chosen direction of the specified axis This
ensures finding all possible phase boundary lines (not just the first one) along such an axis direction.

Default behavior is to only generate one start point at the first phase change.

Returns
This InitialEquilibrium object

add_equilibria_at_first_phase_change()

This generates one start point at the first phase change.

This is the default behavior.

Returns
This InitialEquilibrium object

set_direction(direction_enum: Direction)
Specifies along which axes the initial equilibria should be added.

The default direction is INCREASE_FIRST_AXIS.

Parameters
direction_enum –

Returns
This InitialEquilibrium object

class tc_python.step_or_map_diagrams.Linear

Bases: AxisType

Represents a linear axis.
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get_type()→ str
Convenience method for getting axis type.

Returns
The type

set_max_step_size(max_step_size: float)
Sets the axis to use the maximum step size configuration.

Default: This is not the default which is minimum number of steps

Note: Either maximum step size or minimum number of steps can be used but not both at the same time.

Parameters
max_step_size – The maximum step size [unit according to the axis quantity]

Returns
This Linear object

set_min_nr_of_steps(min_nr_of_steps: float = 40)
Sets the axis to use the minimum number of steps configuration.

Default: This is the default option (with a minimum number of steps of 40)

Note: Either maximum step size or minimum number of steps can be used but not both at the same time.

Parameters
min_nr_of_steps – The minimum number of steps

Returns
This Linear object

class tc_python.step_or_map_diagrams.Logarithmic(scale_factor: float = 1.1)
Bases: AxisType

Represents a logarithmic axis.

Note: A logarithmic axis is useful for low fractions like in a gas phase where 1E-7 to 1E-2 might be an interesting
range. For the pressure a logarithmic axis is often also useful.

get_type()→ str
Convenience method for getting axis type.

Returns
The type

set_scale_factor(scale_factor: float = 1.1)
Sets the scale factor.

Default: 1.1

Parameters
scale_factor – The scale factor setting the maximum factor between two calculated values,
must be larger than 1.0
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Returns
This Logarithmic object

class tc_python.step_or_map_diagrams.PhaseDiagramCalculation(calculator)
Bases: AbstractPhaseDiagramCalculation

Configuration for a phase diagram calculation.

Note: Specify the conditions, the calculation is performed with calculate().

add_initial_equilibrium(initial_equilibrium: InitialEquilibrium)

Add initial equilibrium start points from which a phase diagram is calculated.

Scans along the axis variables and generates start points when the scan procedure crosses a phase boundary.

It may take a little longer to execute than using the minimum number of start points, as some lines may
be calculated more than once. But the core remembers all node points and subsequently stops calculations
along a line when it finds a known node point.

It is also possible to create a sequence of start points from one initial equilibria.

Parameters
initial_equilibrium – The initial equilibrium

Returns
This PhaseDiagramCalculation object

calculate(keep_previous_results: bool = False, timeout_in_minutes: float = 0.0)→ PhaseDiagramResult
Performs the phase diagram calculation.

Warning: If you use keep_previous_results=True, you must not use another calculator or even get
results in between the calculations using calculate(). Then the previous results will actually be lost.

Parameters
• keep_previous_results – If True, results from any previous call to this method are ap-

pended. This can be used to combine calculations with multiple start points if the mapping
fails at a certain condition.

• timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will be
unusable and a new TCPython block must be created for further calculations.

Returns
A new PhaseDiagramResult object which later can be used to get specific values from the
calculated result.

disable_global_minimization()

Disables global minimization.

Default: Enabled

Returns
This PhaseDiagramCalculation object
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dont_keep_default_equilibria()

Do not keep the initial equilibria added by default.

This is only relevant in combination with add_initial_equilibrium().

This is the default behavior.

Returns
This PhaseDiagramCalculation object

enable_global_minimization()

Enables global minimization.

Default: Enabled

Returns
This PhaseDiagramCalculation object

get_components()→ List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns
The component names

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

keep_default_equilibria()

Keep the initial equilibria added by default. This is only relevant in combination with
add_initial_equilibrium().

Default behavior is to not keep default equilibria.

Returns
This PhaseDiagramCalculation object
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remove_all_conditions()

Removes all set conditions.

Returns
This PhaseDiagramCalculation object

remove_all_initial_equilibria()

Removes all previously added initial equilibria.

Returns
This PhaseDiagramCalculation object

remove_condition(quantity: Union[ThermodynamicQuantity, str])
Removes the specified condition.

Parameters
quantity – The thermodynamic quantity to set as condition; a Console Mode syntax string
can be used as an alternative (for example X(Cr))

Returns
This ThermodynamicCalculation object

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This PhaseDiagramCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_condition(quantity: Union[ThermodynamicQuantity, str], value: float)
Sets the specified condition.

Parameters
• quantity – The thermodynamic quantity to set as condition; a Console Mode syntax string

can be used as an alternative (for example X(Cr))

• value – The value of the condition

Returns
This PhaseDiagramCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
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• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This PhaseDiagramCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PhaseDiagramCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This PhaseDiagramCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This PhaseDiagramCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PhaseDiagramCalculation object

with_first_axis(axis: CalculationAxis)
Sets the first calculation axis.

Parameters
axis – The axis

Returns
This PhaseDiagramCalculation object

with_options(options: PhaseDiagramOptions)
Sets the simulation options.
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Parameters
options – The simulation options

Returns
This PhaseDiagramCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This PhaseDiagramCalculation object

with_second_axis(axis: CalculationAxis)
Sets the second calculation axis.

Parameters
axis – The axis

Returns
This PhaseDiagramCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.
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Parameters
system_modifications – The system modification to be performed

Returns
This PhaseDiagramCalculation object

class tc_python.step_or_map_diagrams.PhaseDiagramOptions

Bases: object

Simulation options for phase diagram calculations.

disable_approximate_driving_force_for_metastable_phases()

Disables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This PhaseDiagramOptions object

disable_control_step_size_during_minimization()

Disables stepsize control during minimization (non-global).

Default: Enabled

Returns
This PhaseDiagramOptions object

disable_force_positive_definite_phase_hessian()

Disables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This PhaseDiagramOptions object

dont_use_auto_start_points()

Switches the usage of automatic starting points for the mapping off.

Default: Switched on

Returns
This PhaseDiagramOptions object

dont_use_inside_mesh_points()

Switches the usage of inside meshing points for the mapping off.

Default: Switched off

Returns
This PhaseDiagramOptions object
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enable_approximate_driving_force_for_metastable_phases()

Enables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This PhaseDiagramOptions object

enable_control_step_size_during_minimization()

Enables stepsize control during normal minimization (non-global).

Default: Enabled

Returns
This PhaseDiagramOptions object

enable_force_positive_definite_phase_hessian()

Enables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This PhaseDiagramOptions object

set_global_minimization_max_grid_points(max_grid_points: int = 2000)
Sets the maximum number of grid points in global minimization. ** Only applicable if global minimization
is actually used**.

Default: 2000 points

Parameters
max_grid_points – The maximum number of grid points

Returns
This PhaseDiagramOptions object

set_global_minimization_test_interval(global_test_interval: int = 0)
Sets the interval for the global test.

Default: 0

Parameters
global_test_interval – The global test interval

Returns
This PhaseDiagramOptions object

set_max_no_of_iterations(max_no_of_iterations: int = 500)
Set the maximum number of iterations.

Default: max. 500 iterations
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Note: As some models give computation times of more than 1 CPU second/iteration, this number is also
used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used.

Parameters
max_no_of_iterations – The max. number of iterations

Returns
This PhaseDiagramOptions object

set_no_of_mesh_along_axis(no_of_mesh_along_axis: int = 3)
Sets the number of meshes along an axis for the mapping.

Default: 3

Parameters
no_of_mesh_along_axis – The number of meshes

Returns
This PhaseDiagramOptions object

set_required_accuracy(accuracy: float = 1e-06)
Sets the required relative accuracy.

Default: 1.0E-6

Note: This is a relative accuracy, and the program requires that the relative difference in each variable must
be lower than this value before it has converged. A larger value normally means fewer iterations but less
accurate solutions. The value should be at least one order of magnitude larger than the machine precision.

Parameters
accuracy – The required relative accuracy

Returns
This PhaseDiagramOptions object

set_smallest_fraction(smallest_fraction: float = 1e-12)
Sets the smallest fraction for constituents that are unstable.

It is normally only in the gas phase that you can find such low fractions.

The default value for the smallest site-fractions is 1E-12 for all phases except for IDEAL phase with one
sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as
1E-30.

Parameters
smallest_fraction – The smallest fraction for constituents that are unstable

Returns
This PhaseDiagramOptions object

use_auto_start_points()

Switches the usage of automatic starting points for the mapping on.

Default: Switched on

Returns
This PhaseDiagramOptions object
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use_inside_mesh_points()

Switches the usage of inside meshing points for the mapping off.

Default: Switched off

Returns
This PhaseDiagramOptions object

class tc_python.step_or_map_diagrams.PhaseDiagramResult(result)
Bases: AbstractResult

Result of a phase diagram calculation, it can be evaluated using quantities or Console Mode syntax.

add_coordinate_for_phase_label(x: float, y: float)
Sets a coordinate in the result plot for which the stable phases will be evaluated and provided in the result
data object. This can be used to plot the phases of a region into the phase diagram or just to programmati-
cally evaluate the phases in certain regions.

Warning: This method takes coordinates of the plot axes and not of the calculation axis.

Parameters
• x – The coordinate of the first plot axis (“x-axis”) [unit of the plot axis]

• y – The coordinate of the second plot axis (“y-axis”) [unit of the plot axis]

Returns
This PhaseDiagramResult object

get_values_grouped_by_quantity_of(x_quantity: Union[ThermodynamicQuantity, str], y_quantity:
Union[ThermodynamicQuantity, str])→
PhaseDiagramResultValues

Returns x-y-line data grouped by the multiple datasets of the specified quantities (for example in depen-
dency of components). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity. Usually the result data represents the phase diagram.

Note: The different datasets will contain NaN-values between different subsections and are not sorted
(because they are unsortable due to their nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuan-
tity.user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as

an alternative (for example ‘T’), or even a function (for example ‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), or even a function (for example ‘CP=HM.T’)

6.1. Calculations 125



TC-Python Documentation, Release 2025b

Returns
The phase diagram data

get_values_grouped_by_stable_phases_of(x_quantity: Union[ThermodynamicQuantity, str],
y_quantity: Union[ThermodynamicQuantity, str])→
PhaseDiagramResultValues

Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID
+ FCC_A1”). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity. Usually the result data represents the phase diagram.

Note: The different datasets will contain NaN-values between different subsections and are not sorted
(because they are unsortable due to their nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuan-
tity.user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as

an alternative (for example ‘T’), or even a function (for example ‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), or even a function (for example ‘CP=HM.T’)

Returns
The phase diagram data

remove_phase_labels()

Erases all added coordinates for phase labels.

Returns
This PhaseDiagramResult object

save_to_disk(path: str)
Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later
be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this PhaseDiagramResult object

set_phase_name_style(phase_name_style_enum: PhaseNameStyle = PhaseNameStyle.NONE)
Sets the style of the phase name labels that will be used in the result data object (constitution description,
ordering description, . . . ).

Default: PhaseNameStyle.NONE

Parameters
phase_name_style_enum – The phase name style
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Returns
This PhaseDiagramResult object

class tc_python.step_or_map_diagrams.PhaseDiagramResultValues(phase_diagram_values_java)
Bases: object

Represents the data of a phase diagram.

get_invariants()→ ResultValueGroup
Returns the x- and y-datasets of all invariants in the phase diagram.

Note: The datasets will normally contain different sections separated by NaN-values.

Returns
The invariants dataset object

get_lines()→ Dict[str, ResultValueGroup]
Returns the x- and y-datasets of all phase boundaries in the phase diagram.

Note: The datasets will normally contain different sections separated by NaN-values.

Returns
Containing the phase boundary datasets with the quantities or stable phases as keys (depend-
ing on the used method to get the values)

get_phase_labels()→ List[PhaseLabel]
Returns the phase labels added for certain coordinates using PhaseDiagramResult.
add_coordinate_for_phase_label().

Returns
The list with the phase label data (that contains plot coordinates and stable phases)

get_tie_lines()→ ResultValueGroup
Returns the x- and y-datasets of all tie-lines in the phase diagram.

Note: The datasets will normally contain different sections separated by NaN-values.

Returns
The tie-line dataset object

class tc_python.step_or_map_diagrams.PhaseLabel(phase_label_java)
Bases: object

Represents a phase label at a plot coordinate, i.e. the stable phases that are present at that plot coordinate.

get_text()→ str
Accessor for the phase label :return: the phase label

get_x()→ List[float]
Accessor for the x-value :return: the x value
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get_y()→ List[float]
Accessor for the y-value :return: the y value

class tc_python.step_or_map_diagrams.PhaseNameStyle(value)
Bases: Enum

The style of the phase names used in the labels.

ALL = 1

Adding ordering and constitution description.

CONSTITUTION_DESCRIPTION = 3

Adding only constitution description.

NONE = 0

Only the phase names.

ORDERING_DESCRIPTION = 4

Adding only ordering description.

class tc_python.step_or_map_diagrams.PropertyDiagramCalculation(calculator)
Bases: AbstractPropertyDiagramCalculation

calculate(keep_previous_results: bool = False, timeout_in_minutes: float = 0.0)→
PropertyDiagramResult

Performs the property diagram calculation.

Warning: If you use keep_previous_results=True, you must not use another calculator or even get
results in between the calculations using calculate(). Then the previous results will actually be lost.

Parameters
• keep_previous_results – If True, results from any previous call to this method are ap-

pended. This can be used to combine calculations with multiple start points if the stepping
fails at a certain condition.

• timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will be
unusable and a new TCPython block must be created for further calculations.

Returns
A new PropertyDiagramResult object which later can be used to get specific values from
the calculated result

disable_global_minimization()

Disables global minimization.

Default: Enabled

Returns
This PropertyDiagramCalculation object

disable_step_separate_phases()

Disables step separate phases. This is the default setting.

Returns
This PropertyDiagramCalculation object
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enable_global_minimization()

Enables global minimization.

Default: Enabled

Returns
This PropertyDiagramCalculation object

enable_step_separate_phases()

Enables step separate phases.

Default: By default separate phase stepping is disabled

Note: This is an advanced option, it is used mostly to calculate how the Gibbs energy for a number of
phases varies for different compositions. This is particularly useful to calculate Gibbs energies for complex
phases with miscibility gaps and for an ordered phase that is never disordered (e.g. SIGMA-phase, G-phase,
MU-phase, etc.).

Returns
This PropertyDiagramCalculation object

get_components()→ List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns
The component names

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

remove_all_conditions()

Removes all set conditions.

Returns
This PropertyDiagramCalculation object

6.1. Calculations 129



TC-Python Documentation, Release 2025b

remove_condition(quantity: Union[ThermodynamicQuantity, str])
Removes the specified condition.

Parameters
quantity – The thermodynamic quantity to set as condition; a Console Mode syntax string
can be used as an alternative (for example X(Cr))

Returns
This PropertyDiagramCalculation object

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This PropertyDiagramCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_condition(quantity: Union[ThermodynamicQuantity, str], value: float)
Sets the specified condition.

Parameters
• quantity – The thermodynamic quantity to set as condition; a Console Mode syntax string

can be used as an alternative (for example X(Cr))

• value – The value of the condition

Returns
This PropertyDiagramCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This PropertyDiagramCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.
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Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PropertyDiagramCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This PropertyDiagramCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This PropertyDiagramCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This PropertyDiagramCalculation object

with_axis(axis: CalculationAxis)
Sets the calculation axis.

Parameters
axis – The axis

Returns
This PropertyDiagramCalculation object

with_options(options: PropertyDiagramOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This PropertyDiagramCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

6.1. Calculations 131



TC-Python Documentation, Release 2025b

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This PropertyDiagramCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PropertyDiagramCalculation object

class tc_python.step_or_map_diagrams.PropertyDiagramOptions

Bases: object

Simulation options for the property diagram calculations.

disable_approximate_driving_force_for_metastable_phases()

Disables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

132 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This PropertyDiagramOptions object

disable_control_step_size_during_minimization()

Disables stepsize control during minimization (non-global).

Default: Enabled

Returns
This PropertyDiagramOptions object

disable_force_positive_definite_phase_hessian()

Disables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This PropertyDiagramOptions object

enable_approximate_driving_force_for_metastable_phases()

Enables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This PropertyDiagramOptions object

enable_control_step_size_during_minimization()

Enables stepsize control during normal minimization (non-global).

Default: Enabled

Returns
This PropertyDiagramOptions object

enable_force_positive_definite_phase_hessian()

Enables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This PropertyDiagramOptions object
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set_global_minimization_max_grid_points(max_grid_points: int = 2000)
Sets the maximum number of grid points in global minimization. Only applicable if global minimization
is actually used.

Default: 2000 points

Parameters
max_grid_points – The maximum number of grid points

Returns
This PropertyDiagramOptions object

set_global_minimization_test_interval(global_test_interval: int = 0)
Sets the interval for the global test.

Default: 0

Parameters
global_test_interval – The global test interval

Returns
This PropertyDiagramOptions object

set_max_no_of_iterations(max_no_of_iterations: int = 500)
Set the maximum number of iterations.

Default: max. 500 iterations

Note: As some models give computation times of more than 1 CPU second/iteration, this number is also
used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used.

Parameters
max_no_of_iterations – The max. number of iterations

Returns
This PropertyDiagramOptions object

set_required_accuracy(accuracy: float = 1e-06)
Sets the required relative accuracy.

Default: 1.0E-6

Note: This is a relative accuracy, and the program requires that the relative difference in each variable must
be lower than this value before it has converged. A larger value normally means fewer iterations but less
accurate solutions. The value should be at least one order of magnitude larger than the machine precision.

Parameters
accuracy – The required relative accuracy

Returns
This PropertyDiagramOptions object

set_smallest_fraction(smallest_fraction: float = 1e-12)
Sets the smallest fraction for constituents that are unstable.

It is normally only in the gas phase that you can find such low fractions.
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The default value for the smallest site-fractions is 1E-12 for all phases except for IDEAL phase with one
sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as
1E-30.

Parameters
smallest_fraction – The smallest fraction for constituents that are unstable

Returns
This PropertyDiagramOptions object

class tc_python.step_or_map_diagrams.PropertyDiagramResult(result)
Bases: AbstractResult

Result of a property diagram. This can be used to query for specific values.

get_values_grouped_by_quantity_of(x_quantity: Union[ThermodynamicQuantity, str], y_quantity:
Union[ThermodynamicQuantity, str], sort_and_merge: bool =
True)→ Dict[str, ResultValueGroup]

Returns x-y-line data grouped by the multiple datasets of the specified quantities (typically the phases). The
available quantities can be found in the documentation of the factory class ThermodynamicQuantity.

Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag `sort_and_merge` has been set (because they might be unsortable due to their
nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuan-
tity.user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as

an alternative (for example ‘T’), or even a function (for example ‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), or even a function (for example ‘CP=HM.T’)

• sort_and_merge – If True, the data is sorted and merged into as few subsections as pos-
sible (divided by NaN)

Returns
Containing the datasets with the quantities as their keys

get_values_grouped_by_stable_phases_of(x_quantity: Union[ThermodynamicQuantity, str],
y_quantity: Union[ThermodynamicQuantity, str],
sort_and_merge: bool = True)→ Dict[str,
ResultValueGroup]

Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID
+ FCC_A1”). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity.
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Note: The different datasets might contain NaN-values between different subsections and different lines of
an ambiguous dataset. They might not be sorted even if the flag `sort_and_merge` has been set (because
they might be unsortable due to their nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuan-
tity.user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as

an alternative (for example ‘T’), or even a function (for example ‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), or even a function (for example ‘CP=HM.T’)

• sort_and_merge – If True, the data will be sorted and merged into as few subsections as
possible (divided by NaN)

Returns
Containing the datasets with the quantities as their keys

get_values_of(x_quantity: Union[ThermodynamicQuantity, str], y_quantity:
Union[ThermodynamicQuantity, str])→ [List[float], List[float]]

Returns sorted x-y-line data without any separation. Use get_values_grouped_by_quantity_of() or
get_values_grouped_by_stable_phases_of() instead if you need such a separation. The available
quantities can be found in the documentation of the factory class ThermodynamicQuantity.

Note: This method will always return sorted data without any NaN-values. If it is unsortable that might
give data that is hard to interpret. In such a case you need to choose the quantity in another way or use one
of the other methods. One example of this is to use quantities with All-markers, for example MassFrac-
tionOfAComponent(“All”).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuan-
tity.user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first Thermodynamic quantity (“x-axis”), Console Mode syntax strings

can be used as an alternative (for example ‘T’) or even a function (for example ‘f=T*1.01’)
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• y_quantity – The second Thermodynamic quantity (“y-axis”), Console Mode syntax
strings can be used as an alternative (for example ‘NV’), or even a function (for example
‘CP=HM.T’)

Returns
A tuple containing the x- and y-data in lists

save_to_disk(path: str)
Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later
be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this PropertyDiagramResult object

set_phase_name_style(phase_name_style_enum: PhaseNameStyle = PhaseNameStyle.NONE)
Sets the style of the phase name labels that will be used in the result data object (constitution description,
ordering description, . . . ).

Default: PhaseNameStyle.NONE

Parameters
phase_name_style_enum – The phase name style

Returns
This PropertyDiagramResult object

6.1.6 Module “diffusion”

class tc_python.diffusion.AbstractBoundaryCondition

Bases: object

The abstract base class for all boundary conditions.

class tc_python.diffusion.AbstractCalculatedGrid

Bases: AbstractGrid

The abstract base class for calculated grids.

class tc_python.diffusion.AbstractElementProfile

Bases: object

The abstract base class for all initial composition profile types.

class tc_python.diffusion.AbstractGrid

Bases: object

The abstract base class for all grids.

class tc_python.diffusion.AbstractSolver

Bases: object

Abstract base class for the solvers (Classic, Homogenization and Automatic).

class tc_python.diffusion.ActivityFluxFunction

Bases: BoundaryCondition
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get_type()→ str
The type of the boundary condition.

Returns
The type

set_flux_function(element_name: str, f: str = '0', g: str = '1', n: float = 1.0, to_time: float =
1.7976931348623157e+308)

The flux for the independent components must be given in the format:

J = f(T,P,TIME) * ( ACTIVITY^N - g(T,P,TIME) )

where f and g may be functions of time (TIME), temperature (T), and pressure (P), and N is an integer.

f and g must be expressed in DICTRA Console Mode syntax.

Parameters
• element_name – The name of the element

• f – the function f in the formula above

• g – the function g in the formula above

• n – the constant N in the formula above

• to_time – The max-time for which the flux function is used.

class tc_python.diffusion.AutomaticGrid

Bases: CalculatedGrid

Represents an automatic grid.

get_type()→ str
Type of the grid.

Returns
The type

with_coarse_grid()

Configures this automatic grid as COARSE and returns the object to allow method chaining.

Returns
This AutomaticGrid object (configured as COARSE).

with_custom_grid(max_number_points: int = 50, max_geometric_factor: float = 1.2)
Configures this automatic grid as CUSTOM and optionally sets max number points and max geometric
factor.

Parameters
• max_number_points – (Optional) Max number of points for the CUSTOM grid. Default

is 50.

• max_geometric_factor – (Optional) Max geometric factor for the CUSTOM grid. De-
fault is 1.2.

Returns
This AutomaticGrid object (configured as CUSTOM).

Raises
ValueError – If max_number_points is not greater than 1.
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with_fine_grid()

Configures this automatic grid as FINE and returns the object to allow method chaining.

Returns
This AutomaticGrid object (configured as FINE).

with_medium_grid()

Configures this automatic grid as MEDIUM and returns the object to allow method chaining.

Returns
This AutomaticGrid object (configured as MEDIUM).

class tc_python.diffusion.AutomaticGridType(value)
Bases: Enum

An enumeration representing the types of automatic grid.

Attributes: COARSE: Represents a coarse grid. MEDIUM: Represents a medium grid. FINE: Represents a fine
grid. CUSTOM: Represents a CUSTOM grid.

COARSE = 'COARSE'

CUSTOM = 'CUSTOM'

FINE = 'FINE'

MEDIUM = 'MEDIUM'

class tc_python.diffusion.AutomaticSolver

Bases: Solver

Solver using the homogenization model if any region has more than one phase, otherwise using the classic model.

Note: This is the default solver and recommended for most applications.

get_type()→ str
The type of the solver.

Returns
The type

set_flux_balance_equation_accuracy(accuracy: float = 1e-16)
Only valid if the :class:`ClassicSolver` is actually used (i.e. not more than one phase in each region).
Sets the required accuracy during the solution of the flux balance equations. Default: 1.0e-16

Parameters
accuracy – The required accuracy

Returns
A new AutomaticSolver object

set_tieline_search_variable_to_activity()

Only valid if the :class:`ClassicSolver` is actually used (i.e. not more than one phase in each region).
Configures the solver to use the activity of a component to find the correct tie-line at the phase interface.
Either activity or chemical potential are applied to reduce the degrees of freedom at the local equilibrium.
Default: This is the default setting

Returns
A new AutomaticSolver object

6.1. Calculations 139



TC-Python Documentation, Release 2025b

set_tieline_search_variable_to_potential()

Only valid if the :class:`ClassicSolver` is actually used (i.e. not more than one phase in each region).
Configures the solver to use the chemical potential of a component to find the correct tie-line at the phase
interface. Either activity or chemical potential are applied to reduce the degrees of freedom at the local
equilibrium. Default: To use the activity

Returns
A new AutomaticSolver object

class tc_python.diffusion.BoundaryCondition

Bases: AbstractBoundaryCondition

Contains factory methods for the the different boundary conditions available.

classmethod activity_flux_function()

Factory method that creates a new activity-flux-function boundary condition.

This type of boundary condition is used to take into account the finite rate of a surface reaction.

The flux for the independent components must be given in the format:

J = f(T,P,TIME) * ( ACTIVITY^N - g(T,P,TIME) )

where f and g may be functions of time (TIME), temperature (T), and pressure (P), and N is an integer.

f and g must be expressed in DICTRA Console Mode syntax.

Note: The activities are those with user-defined reference states. The function mass transfer coefficient
is the mass transfer coefficient, activity of the corresponding species in the gas is the activity of the corre-
sponding species in the gas and N is a stoichiometric coefficient.

Note: For more details see L. Sproge and J. Ågren, “Experimental and theoretical studies of gas consump-
tion in the gas carburizing process” J. Heat Treat. 6, 9–19 (1988).

Returns
A new ActivityFluxFunction object

classmethod closed_system()

Factory method that creates a new closed-system boundary condition.

Returns
A new ClosedSystem object

classmethod fix_flux_value()

Factory method that creates a new fix-flux-value boundary condition.

This type of boundary condition makes it possible to enter functions that yield the flux times the molar vol-
ume for the independent components. May be a function of time, temperature and pressure: J(T,P,TIME).

Returns
A new FixFluxValue object

classmethod fixed_compositions(unit_enum: Unit = Unit.MASS_PERCENT)
Factory method that creates a new fixed-composition boundary condition.

Parameters
unit_enum – The composition unit
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Returns
A new FixedCompositions object

classmethod mixed_zero_flux_and_activity()

Factory method that creates a new mixed zero-flux and activity boundary condition

Returns
A new MixedZeroFluxAndActivity object

class tc_python.diffusion.CalculatedGrid

Bases: AbstractCalculatedGrid

Factory class for grids generated by a mathematical series (automatic, linear, geometric, . . . ). Use tc_python.
diffusion.PointByPointGrid instead if you want to use an existing grid from experimental data or a previous
calculation.

Note: A region must contain a number of grid points. The composition is only known at these grid points and
the software assumes that the composition varies linearly between them. The amount and composition of all the
phases present at a single grid point in a certain region are those given by thermodynamic equilibrium keeping
the over-all composition at the grid point fixed.

classmethod automatic()

Factory method that creates a new automatic grid with MEDIUM grid type, as default.

Returns
A new AutomaticGrid object

classmethod double_geometric(no_of_points: int = 50, lower_geometrical_factor: float = 1.1,
upper_geometrical_factor: float = 0.9)

Factory method that creates a new double geometric grid.

Note: Double geometric grids have a high number of grid points in the middle or at both ends of a region.
One geometrical factor for the lower (left) and upper (right) half of the region need to specified. In both
cases a geometrical factor of larger than one yields a higher density of grid points at the lower end of the
half and vice versa for a factor smaller than one.

Parameters
• no_of_points – The number of points

• lower_geometrical_factor – The geometrical factor for the left half

• upper_geometrical_factor – The geometrical factor for the right half

Returns
A new DoubleGeometricGrid object

classmethod geometric(no_of_points: int = 50, geometrical_factor: float = 1.1)
Factory method that creates a new geometric grid.

Note: A grid that yields a varying density of grid points in the region. A geometrical factor larger than
one yields a higher density of grid points at the lower end of the region and a factor smaller than one yields
a higher density of grid points at the upper end of the region.
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Parameters
• no_of_points – The number of points

• geometrical_factor – The geometrical factor

Returns
A new GeometricGrid object

classmethod linear(no_of_points: int = 50)
Factory method that creates a new equally spaced grid.

Parameters
no_of_points – The number of points

Returns
A new LinearGrid object

class tc_python.diffusion.ClassicSolver

Bases: Solver

Solver using the Classic model.

Note: This solver never switches to the homogenization model even if it fails to converge. Use the tc_python.
diffusion.AutomaticSolver if necessary instead.

get_type()→ str
Convenience method for getting the type of the solver.

Returns
The type of the solver

set_flux_balance_equation_accuracy(accuracy: float = 1e-16)
Sets the required accuracy during the solution of the flux balance equations. Default: 1.0e-16

Parameters
accuracy – The required accuracy

Returns
A new ClassicSolver object

set_tieline_search_variable_to_activity()

Configures the solver to use the activity of a component to find the correct tie-line at the phase interface.
Either activity or chemical potential are applied to reduce the degrees of freedom at the local equilibrium.
Default: This is the default setting

set_tieline_search_variable_to_potential()

Configures the solver to use the chemical potential of a component to find the correct tie-line at the phase
interface. Either activity or chemical potential are applied to reduce the degrees of freedom at the local
equilibrium. Default: To use the activity

Returns
A new ClassicSolver object

class tc_python.diffusion.ClosedSystem

Bases: BoundaryCondition

Represents a boundary for a closed system.
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get_type()→ str
Convenience method for getting the type of the boundary condition.

Returns
The type of the boundary condition

class tc_python.diffusion.CompositionProfile(unit_enum: Unit = Unit.MASS_PERCENT)
Bases: object

Contains initial concentration profiles for the elements.

add(element_name: str, profile: ElementProfile)
Adds a concentration profile for the specified element.

Parameters
• element_name – The name of the element

• profile – The initial concentration profile

Returns
A CompositionProfile object

class tc_python.diffusion.ConstantProfile(value: float)
Bases: ElementProfile

Represents a constant initial concentration profile.

get_type()→ str
The type of the element profile.

Returns
The type

class tc_python.diffusion.ContinuedDiffusionCalculation(calculation)
Bases: AbstractCalculation

Configuration for a diffusion calculation that is a continuation of a previous isothermal or non-isothermal diffu-
sion calculation. It contains a subset of the settings possible in the original calculation.

Use set_simulation_time() to set a simulation time that is higher than the original calculation.

calculate(timeout_in_minutes: float = 0.0)→ DiffusionCalculationResult
Runs the diffusion calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A DiffusionCalculationResult which later can be used to get specific values from the
calculated result

set_simulation_time(simulation_time: float)
Sets the simulation time.

Parameters
simulation_time – The simulation time [s]

Returns
This DiffusionIsoThermalCalculation object
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with_left_boundary_condition(boundary_condition: BoundaryCondition, to: float =
1.7976931348623157e+308)

Defines the boundary condition on the left edge of the system.

Default: A closed-system boundary condition.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Note: You can specify time-dependent boundary conditions by calling
with_left_boundary_condition() many times, with different values of the “to” parameter.

Examples:

• with_left_boundary_condition(BoundaryCondition.closed_system(), to=100)

• with_left_boundary_condition(BoundaryCondition.mixed_zero_flux_and_activity().set_activity_for_element(“C”,
surface_activity), to=500)

• with_left_boundary_condition(BoundaryCondition.closed_system())

This example sets an closed-system-boundary-condition from start up to 100s and a activity-boundary-
condition from 100s to 500s and finally a closed-system-boundary-condition from 500s to the end of sim-
ulation.

Parameters
• boundary_condition – The boundary condition

• to – The upper time-limit for boundary_condition.

Returns
This DiffusionIsoThermalCalculation object

with_options(options: Options, to: float = 1.7976931348623157e+308)
Sets the general simulation conditions.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• options – The general simulation conditions

• to – The upper time-limit for options.

Returns
This DiffusionIsoThermalCalculation object

with_right_boundary_condition(boundary_condition: BoundaryCondition, to: float =
1.7976931348623157e+308)

Defines the boundary condition on the right edge of the system.

Default: A closed-system boundary condition

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.
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Note: You can specify time-dependent boundary conditions by calling
with_right_boundary_condition() many times, with different values of the “to” parameter.

Examples:

• with_right_boundary_condition(BoundaryCondition.closed_system(), to=100)

• with_right_boundary_condition(BoundaryCondition.mixed_zero_flux_and_activity().set_activity_for_element(“C”,
surface_activity), to=500)

• with_right_boundary_condition(BoundaryCondition.closed_system())

This example sets an closed-system-boundary-condition from start up to 100s and a activity-boundary-
condition from 100s to 500s and finally a closed-system-boundary-condition from 500s to the end of sim-
ulation.

Parameters
• boundary_condition – The boundary condition

• to – The upper time-limit for boundary_condition.

Returns
This DiffusionIsoThermalCalculation object

with_solver(solver: Solver, to: float = 1.7976931348623157e+308)
Sets the solver to use (Classic, Homogenization or Automatic). Default is Automatic.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• solver – The solver to use

• to – The upper time-limit for solver.

Returns
This DiffusionIsoThermalCalculation object

with_timestep_control(timestep_control: TimestepControl, to: float = 1.7976931348623157e+308)
Sets the timestep control options.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• timestep_control – The new timestep control options

• to – The upper time-limit for timestep_control.

Returns
This DiffusionIsoThermalCalculation object

class tc_python.diffusion.DiffusionCalculationResult(result)
Bases: AbstractResult

Result of a diffusion calculation. This can be used to query for specific values. For details of the axis variables,
search the Thermo-Calc help.
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get_mass_fraction_at_lower_interface(region: str, component: str)→ [List[float], List[float]]
Returns the mass fraction of the specified component at the lower boundary of the specified region, in
dependency of time.

Parameters
• region – The name of the region

• component – The name of the component

Returns
A tuple of two lists of floats (time [s], mass fraction of the specified component)

get_mass_fraction_at_upper_interface(region: str, component: str)→ [List[float], List[float]]
Returns the mass fraction of the specified component at the upper boundary of the specified region, in
dependency of time.

Parameters
• region – The name of the region

• component – The name of the component

Returns
A tuple of two lists of floats (time [s], mass fraction of the specified component)

get_mass_fraction_of_component_at_time(component: str, time: Union[SimulationTime, float])→
[List[float], List[float]]

Returns the mass fraction of the specified component at the specified time.

Note: Use the enum tc_python.diffusion.SimulationTime to choose the first or the last timepoint
of the simulation. A timepoint close to the last one should never be specified manually because the actual
end of the simulation can slightly deviate.

Parameters
• component – The name of the component

• time – The time [s]

Returns
A tuple of two lists of floats (distance [m], mass fraction of component at the specified time)

get_mass_fraction_of_phase_at_time(phase: str, time: Union[SimulationTime, float])→ [List[float],
List[float]]

Returns the mass fraction of the specified phase.

Note: Use the enum tc_python.diffusion.SimulationTime to choose the first or the last timepoint
of the simulation. A timepoint close to the last one should never be specified manually because the actual
end of the simulation can slightly deviate.

Parameters
• phase – The name of the phase

• time – The time [s]
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Returns
A tuple of two lists of floats (distance [m], mass fraction of hte phase at the specified time)

get_mole_fraction_at_lower_interface(region: str, component: str)→ [List[float], List[float]]
Returns the mole fraction of the specified component at the lower boundary of the specified region, in
dependency of time.

Parameters
• region – The name of the region

• component – The name of the component

Returns
A tuple of two lists of floats (time [s], mole fraction of the specified component)

get_mole_fraction_at_upper_interface(region: str, component: str)→ [List[float], List[float]]
Returns the mole fraction of the specified component at the upper boundary of the specified region, in
dependency of time.

Parameters
• region – The name of the region

• component – The name of the component

Returns
A tuple of two lists of floats (time [s], mole fraction of the specified component)

get_mole_fraction_of_component_at_time(component: str, time: Union[SimulationTime, float])→
[List[float], List[float]]

Returns the mole fraction of the specified component at the specified time.

Note: Use the enum tc_python.diffusion.SimulationTime to choose the first or the last timepoint
of the simulation. A timepoint close to the last one should never be specified manually because the actual
end of the simulation can slightly deviate.

Parameters
• component – The name of the component

• time – The time [s]

Returns
A tuple of two lists of floats (distance [m], mole fraction of component at the specified time)

get_mole_fraction_of_phase_at_time(phase: str, time: Union[SimulationTime, float])→ [List[float],
List[float]]

Returns the mole fraction of the specified phase.

Note: Use the enum tc_python.diffusion.SimulationTime to choose the first or the last timepoint
of the simulation. A timepoint close to the last one should never be specified manually because the actual
end of the simulation can slightly deviate.

Parameters
• phase – The name of the phase
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• time – The time [s]

Returns
A tuple of two lists of floats (distance [m], mole fraction of the phase at the specified time)

get_position_of_lower_boundary_of_region(region: str)→ [List[float], List[float]]
Returns the position of the lower boundary of the specified region in dependency of time.

Parameters
region – The name of the region

Returns
A tuple of two lists of floats (time [s], position of lower boundary of region [m])

get_position_of_upper_boundary_of_region(region: str)→ [List[float], List[float]]
Returns the position of the upper boundary of the specified region in dependency of time.

Parameters
region – The name of the region

Returns
A tuple of two lists of floats (time [s], position of upper boundary of region [m])

get_regions()→ List[str]
Returns the regions of the diffusion simulation.

Note: Automatically generated regions (R_###) are included in the list.

Returns
The region names

get_time_steps()→ List[float]
Returns the timesteps of the diffusion simulation.

Returns
The timesteps [s]

get_total_mass_fraction_of_component(component: str)→ [List[float], List[float]]
Returns the total mass fraction of the specified component in dependency of time.

Parameters
component – The name of the component

Returns
A tuple of two lists of floats (time [s], total mass fraction of the component)

get_total_mass_fraction_of_component_in_phase(component: str, phase: str)→ [List[float],
List[float]]

Returns the total mass fraction of the specified component in the specified phase in dependency of time.

Parameters
• component – The name of the component

• phase – The name of the phase

Returns
A tuple of two lists of floats (time [s], total mass fraction of the component in the phase)
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get_total_mass_fraction_of_phase(phase: str)→ [List[float], List[float]]
Returns the total mass fraction of the specified phase in dependency of the time.

Parameters
phase – The name of the phase

Returns
A tuple of two lists of floats (time [s], total mass fraction of the phase)

get_total_mole_fraction_of_component(component: str)→ [List[float], List[float]]
Returns the total mole fraction of the specified component in dependency of time.

Parameters
component – The name of the component

Returns
A tuple of two lists of floats (time [s], total mole fraction of the component)

get_total_mole_fraction_of_component_in_phase(component: str, phase: str)→ [List[float],
List[float]]

Returns the total mole fraction of the specified component in the specified phase in dependency of time.

Parameters
• component – The name of the component

• phase – The name of the phase

Returns
A tuple of two lists of floats (time [s], total mole fraction of the component in the phase)

get_total_mole_fraction_of_phase(phase: str)→ [List[float], List[float]]
Returns the total mole fraction of the specified phase in dependency of time.

Parameters
phase – The name of the phase

Returns
A tuple of two lists of floats (time [s], total mole fraction of the phase)

get_total_volume_fraction_of_phase(phase: str)→ [List[float], List[float]]
Returns the total volume fraction of the specified phase in dependency of the time.

Parameters
phase – The name of the phase

Returns
A tuple of two lists of floats (time [s], total volume fraction of the phase)

get_values_of(x_axis: Union[DiffusionQuantity, str], y_axis: Union[DiffusionQuantity, str],
plot_condition: Union[PlotCondition, str] = '', independent_variable:
Union[IndependentVariable, str] = '')→ [List[float], List[float]]

Returns the specified result from the simulation, allows all possible settings.

Note: As an alternative, DICTRA Console Mode syntax can be used as well for each quantity and condi-
tion.
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Warning: This is an advanced mode that is equivalent to the possibilities in the DICTRA Console
Mode. Not every combination of settings will return a result.

Parameters
• x_axis – The first result quantity

• y_axis – The second result quantity

• plot_condition – The plot conditions

• independent_variable – The independent variable

Returns
A tuple of two lists of floats (the x_axis quantity result, the y_axis quantity result) [units
according to the quantities]

get_velocity_of_lower_boundary_of_region(region: str)→ [List[float], List[float]]
Returns the velocity of the lower boundary of the specified region in dependency of time.

Parameters
region – The name of the region

Returns
A tuple of two lists of floats (time [s], velocity of lower boundary of region [m/s])

get_velocity_of_upper_boundary_of_region(region: str)→ [List[float], List[float]]
Returns the velocity of the upper boundary of the specified region in dependency of time.

Parameters
region – The name of the region

Returns
A tuple of two lists of floats (time [s], velocity of upper boundary of region [m/s])

get_width_of_region(region: str)→ [List[float], List[float]]
Returns the width of region, in dependency of time.

Parameters
region – The name of the region

Returns
A tuple of two lists of floats (time [s], width of the specified region [m])

save_to_disk(path: str)
Saves the result to disk. The result can later be loaded using tc_python.server.SetUp.
load_result_from_disk().

Note: The result data is represented by a whole folder containing multiple files.

Parameters
path – The path to the result folder, can be relative or absolute.

Returns
This DiffusionCalculationResult object
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with_continued_calculation()

Returns a ContinuedDiffusionCalculation that is used for continuing a diffusion calculation with
altered settings.

Returns
A ContinuedDiffusionCalculation

class tc_python.diffusion.DiffusionIsoThermalCalculation(calculation)
Bases: AbstractCalculation

Configuration for an isothermal diffusion calculation.

add_console_command(console_command: str)
Registers a DICTRA Console Mode command for execution. These commands are executed af-
ter all other configuration directly before the calculation starts to run. All commands are stored
and used until explicitly deleted using tc_python.diffusion.DiffusionIsoThermoCalculation.
remove_all_console_commands.

Parameters
console_command – The DICTRA Console Mode command

Returns
This DiffusionIsoThermalCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw DICTRA-commands directly in the engine, it may hang the pro-
gram in case of spelling mistakes (e.g. forgotten parenthesis, . . . ).

add_region(region: Region)
Adds a region to the calculation. Regions are always added in the simulation domain from left to right.

If you want to replace an already added region, call remove_all_regions(), and add the regions that
you want to keep.

Warning: Regions must have unique names.

Parameters
region – The region to be added

Returns
This DiffusionIsoThermalCalculation object

calculate(timeout_in_minutes: float = 0.0)→ DiffusionCalculationResult
Runs the diffusion calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.
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Returns
A DiffusionCalculationResult which later can be used to get specific values from the
calculated result

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

remove_all_console_commands()

Removes all previously added Console Mode commands.

Returns
This DiffusionIsoThermalCalculation object

remove_all_regions()

Removes all previously added regions.

:return This DiffusionIsoThermalCalculation object

set_simulation_time(simulation_time: float)
Sets the simulation time.

Parameters
simulation_time – The simulation time [s]

Returns
This DiffusionIsoThermalCalculation object

set_temperature(temperature: float)
Sets the temperature for the isothermal simulation.

Parameters
temperature – The temperature [K]

Returns
This DiffusionIsoThermalCalculation object

with_cylindrical_geometry(first_interface_position: float = 0.0)
Sets geometry to cylindrical, corresponds to an infinitely long cylinder of a certain radius.

Default: A planar geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-most
coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest coordinate
(right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters
first_interface_position – The position of the left-most coordinate along the axis, only
necessary for modeling a tube geometry [m]
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Returns
This DiffusionIsoThermalCalculation object

with_left_boundary_condition(boundary_condition: BoundaryCondition, to: float =
1.7976931348623157e+308)

Defines the boundary condition on the left edge of the system.

Default: A closed-system boundary condition.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Note: You can specify time-dependent boundary conditions by calling
with_left_boundary_condition() many times, with different values of the “to” parameter.

Examples:

• with_left_boundary_condition(BoundaryCondition.closed_system(), to=100)

• with_left_boundary_condition(BoundaryCondition.mixed_zero_flux_and_activity().set_activity_for_element(“C”,
surface_activity), to=500)

• with_left_boundary_condition(BoundaryCondition.closed_system())

This example sets an closed-system-boundary-condition from start up to 100s and a activity-boundary-
condition from 100s to 500s and finally a closed-system-boundary-condition from 500s to the end of sim-
ulation.

Parameters
• boundary_condition – The boundary condition

• to – The upper time-limit for boundary_condition.

Returns
This DiffusionIsoThermalCalculation object

with_options(options: Options, to: float = 1.7976931348623157e+308)
Sets the general simulation conditions.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• options – The general simulation conditions

• to – The upper time-limit for options.

Returns
This DiffusionIsoThermalCalculation object

with_planar_geometry()

Sets geometry to planar.

This is default.
Returns

This DiffusionIsoThermalCalculation object
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with_reference_state(element: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• element – The name of the element

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The pressure (in Pa) for the reference state

Returns
This DiffusionIsoThermalCalculation object

with_right_boundary_condition(boundary_condition: BoundaryCondition, to: float =
1.7976931348623157e+308)

Defines the boundary condition on the right edge of the system.

Default: A closed-system boundary condition

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Note: You can specify time-dependent boundary conditions by calling
with_right_boundary_condition() many times, with different values of the “to” parameter.

Examples:

• with_right_boundary_condition(BoundaryCondition.closed_system(), to=100)

• with_right_boundary_condition(BoundaryCondition.mixed_zero_flux_and_activity().set_activity_for_element(“C”,
surface_activity), to=500)

• with_right_boundary_condition(BoundaryCondition.closed_system())
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This example sets an closed-system-boundary-condition from start up to 100s and a activity-boundary-
condition from 100s to 500s and finally a closed-system-boundary-condition from 500s to the end of sim-
ulation.

Parameters
• boundary_condition – The boundary condition

• to – The upper time-limit for boundary_condition.

Returns
This DiffusionIsoThermalCalculation object

with_solver(solver: Solver, to: float = 1.7976931348623157e+308)
Sets the solver to use (Classic, Homogenization or Automatic). Default is Automatic.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• solver – The solver to use

• to – The upper time-limit for solver.

Returns
This DiffusionIsoThermalCalculation object

with_spherical_geometry(first_interface_position: float = 0.0)
Sets geometry to spherical, corresponds to a sphere with a certain radius.

Default: A spherical geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-most
coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest coordinate
(right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters
first_interface_position – The position of the left-most coordinate along the axis, only
necessary for modeling a hollow sphere geometry [m]

Returns
This DiffusionIsoThermalCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This DiffusionIsoThermalCalculation object
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with_timestep_control(timestep_control: TimestepControl, to: float = 1.7976931348623157e+308)
Sets the timestep control options.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• timestep_control – The new timestep control options

• to – The upper time-limit for timestep_control.

Returns
This DiffusionIsoThermalCalculation object

class tc_python.diffusion.DiffusionNonIsoThermalCalculation(calculation)
Bases: AbstractCalculation

Configuration for a non-isothermal diffusion calculation.

add_console_command(console_command: str)
Registers a DICTRA Console Mode command for execution. These commands are executed after
all other configuration directly before the calculation starts to run. All commands are stored and
used until explicitly deleted using tc_python.diffusion.DiffusionNonIsoThermalCalculation.
remove_all_console_commands.

Parameters
console_command – The DICTRA Console Mode command

Returns
This DiffusionNonIsoThermalCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw DICTRA-commands directly in the engine, it may hang the pro-
gram in case of spelling mistakes (e.g. forgotten parenthesis, . . . ).

add_region(region: Region)
Adds a region to the calculation. Regions are always added in the simulation domain from left to right.

If you want to replace an already added region, call remove_all_regions(), and add the regions that
you want to keep.

Warning: Regions must have unique names.

Parameters
region – The region to be added

Returns
This DiffusionNonIsoThermalCalculation object
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calculate(timeout_in_minutes: float = 0.0)→ DiffusionCalculationResult
Runs the diffusion calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A DiffusionCalculationResult which later can be used to get specific values from the
calculated result

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

remove_all_console_commands()

Removes all previously added Console Mode commands.

Returns
This DiffusionNonIsoThermalCalculation object

remove_all_regions()

Removes all previously added regions.

Returns
This DiffusionNonIsoThermalCalculation object

set_simulation_time(simulation_time: float)
Sets the simulation time.

Parameters
simulation_time – The simulation time [s]

Returns
This DiffusionNonIsoThermalCalculation object

with_cylindrical_geometry(first_interface_position: float = 0.0)
Sets geometry to cylindrical, corresponds to an infinitely long cylinder of a certain radius.

Default: A planar geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-most
coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest coordinate
(right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).
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Parameters
first_interface_position – The position of the left-most coordinate along the axis, only
necessary for modeling a tube geometry [m]

Returns
This DiffusionNonIsoThermalCalculation object

with_left_boundary_condition(boundary_condition: BoundaryCondition, to: float =
1.7976931348623157e+308)

Defines the boundary condition on the left edge of the system.

Default: A closed-system boundary condition.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Note: You can specify time-dependent boundary conditions by calling
with_left_boundary_condition() many times, with different values of the “to” parameter.

Examples:

• with_left_boundary_condition(BoundaryCondition.closed_system(), to=100)

• with_left_boundary_condition(BoundaryCondition.mixed_zero_flux_and_activity().set_activity_for_element(“C”,
surface_activity), to=500)

• with_left_boundary_condition(BoundaryCondition.closed_system())

This example sets an closed-system-boundary-condition from start up to 100s and a activity-boundary-
condition from 100s to 500s and finally a closed-system-boundary-condition from 500s to the end of sim-
ulation.

Parameters
• boundary_condition – The boundary condition

• to – The upper time-limit for boundary_condition.

Returns
This DiffusionNonIsoThermalCalculation object

with_options(options: Options, to: float = 1.7976931348623157e+308)
Sets the general simulation conditions.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• options – The general simulation conditions

• to – The upper time-limit for options.

Returns
This DiffusionNonIsoThermalCalculation object

with_planar_geometry()

Sets geometry to planar.

This is default.
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Returns
This DiffusionNonIsoThermalCalculation object

with_reference_state(element: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• element – The name of the element

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The pressure (in Pa) for the reference state

Returns
This DiffusionNonIsoThermalCalculation object

with_right_boundary_condition(boundary_condition: BoundaryCondition, to: float =
1.7976931348623157e+308)

Defines the boundary condition on the right edge of the system.

Default: A closed-system boundary condition

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Note: You can specify time-dependent boundary conditions by calling
with_right_boundary_condition() many times, with different values of the “to” parameter.

Examples:

• with_right_boundary_condition(BoundaryCondition.closed_system(), to=100)

• with_right_boundary_condition(BoundaryCondition.mixed_zero_flux_and_activity().set_activity_for_element(“C”,
surface_activity), to=500)
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• with_right_boundary_condition(BoundaryCondition.closed_system())

This example sets an closed-system-boundary-condition from start up to 100s and a activity-boundary-
condition from 100s to 500s and finally a closed-system-boundary-condition from 500s to the end of sim-
ulation.

Parameters
• boundary_condition – The boundary condition

• to – The upper time-limit for boundary_condition.

Returns
This DiffusionNonIsoThermalCalculation object

with_solver(solver: Solver, to: float = 1.7976931348623157e+308)
Sets the solver to use (Classic, Homogenization or Automatic). Default is Automatic.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• solver – The solver to use

• to – The upper time-limit for solver.

Returns
This DiffusionNonIsoThermalCalculation object

with_spherical_geometry(first_interface_position: float = 0.0)
Sets geometry to spherical, corresponds to a sphere with a certain radius.

Default: A spherical geometry

Note: With a cylindrical or spherical geometry, the system’s zero coordinate (left boundary) is at the
centre of the cylinder or sphere by default. By specifying the first_interface_position, a different left-most
coordinate can be defined. This allows to model a tube or a hollow sphere geometry. The highest coordinate
(right boundary) is defined by the cylinder or sphere radius (i.e. by the width of all regions).

Parameters
first_interface_position – The position of the left-most coordinate along the axis, only
necessary for modeling a hollow sphere geometry [m]

Returns
This DiffusionNonIsoThermalCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed
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Returns
This DiffusionNonIsoThermalCalculation object

with_temperature_profile(temperature_profile: TemperatureProfile)
Sets the temperature profile to use with this calculation.

Parameters
temperature_profile – The temperature profile object (specifying time / temperature
points)

Returns
This DiffusionNonIsoThermalCalculation object

with_timestep_control(timestep_control: TimestepControl, to: float = 1.7976931348623157e+308)
Sets the timestep control options.

It is possible specify the upper time-point for which this setting is valid using the parameter “to”.

Default: The end of the simulation.

Parameters
• timestep_control – The new timestep control options

• to – The upper time-limit for timestep_control.

Returns
This DiffusionNonIsoThermalCalculation object

class tc_python.diffusion.DoubleGeometricGrid(no_of_points: int = 50, lower_geometrical_factor: float
= 1.1, upper_geometrical_factor: float = 0.9)

Bases: CalculatedGrid

Represents a double geometric grid.

get_lower_geometrical_factor()→ float
Returns the lower geometrical factor (for the left half).

Returns
The lower geometrical factor

get_no_of_points()→ int
Returns number of grid points.

Returns
The number of grid points

get_type()→ str
Type of the grid.

Returns
The type of the grid

get_upper_geometrical_factor()

Returns the upper geometrical factor (for the right half).

Returns
The upper geometrical factor
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set_lower_geometrical_factor(geometrical_factor: float = 1.1)
Sets the lower (left half) geometrical factor.

Note: A geometrical factor of larger than one yields a higher density of grid points at the lower end of the
half and vice versa for a factor smaller than one.

Parameters
geometrical_factor – The geometrical factor for the left half

Returns
This DoubleGeometricGrid object

set_no_of_points(no_of_points: int = 50)
Sets the number of grid points.

Parameters
no_of_points – The number of points

Returns
This DoubleGeometricGrid object

set_upper_geometrical_factor(geometrical_factor: float = 0.9)
Sets the upper (right half) geometrical factor.

Note: A geometrical factor of larger than one yields a higher density of grid points at the lower end of the
half and vice versa for a factor smaller than one.

Parameters
geometrical_factor – The geometrical factor for the right half

Returns
This DoubleGeometricGrid object

class tc_python.diffusion.ElementProfile

Bases: AbstractElementProfile

Factory class providing objects for configuring a step, function or linear initial concentration profile.

classmethod constant(value: float)
Factory method that creates a new constant initial concentration profile.

Parameters
value – The constant composition in the region. [unit as defined in CompositionProfile].

Returns
A new ConstantProfile object

classmethod funct(dictra_console_mode_function: str)
Factory method that creates a new initial concentration profile defined by a function in DICTRA Console
Mode syntax.

Parameters
dictra_console_mode_function – The function, expressed in DICTRA Console Mode
syntax.
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Returns
A new FunctionProfile object

Note: This is an advanced feature, preferably a complex concentration profile should be generated using
third party libraries and added to the simulation using tc_python.diffusion.PointByPointGrid .

classmethod linear(start_value: float, end_value: float)
Factory method that creates a new linear initial concentration profile.

Parameters
• start_value – Composition at the left side of the region [unit as defined in
CompositionProfile].

• end_value – Composition at the right side of the region [unit as defined in
CompositionProfile].

Returns
A new LinearProfile object

classmethod step(lower_boundary: float, upper_boundary: float, step_at: float)
Factory method that creates a new initial concentration profile with a step at the specified distance, other-
wise the composition is constant at the specified values.

Parameters
• lower_boundary – Composition before the step [unit as defined in
CompositionProfile].

• upper_boundary – Composition after the step [unit as defined in CompositionProfile].

• step_at – The distance where the step should be [m].

Returns
A new StepProfile object

class tc_python.diffusion.FixFluxValue

Bases: BoundaryCondition

get_type()→ str
The type of the boundary condition.

Returns
The type

set_flux(element_name: str, J: str = '0', to_time: float = 1.7976931348623157e+308)
Enter functions that yield the flux times the molar volume for the specified element. May be a function of
time, temperature and pressure: J(T,P,TIME).

Parameters
• element_name – The name of the element

• J – the function J(T,P,TIME)

• to_time – The max-time for which the flux function is used.

class tc_python.diffusion.FixedCompositions(unit_enum: Unit = Unit.MASS_PERCENT)
Bases: BoundaryCondition

Represents a boundary having fixed composition values.
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get_type()→ str
The type of the boundary condition.

Returns
The type

set_composition(element_name: str, value: float)
Sets the composition for the specified element.

Note: The boundary composition needs to be specified for each element.

Parameters
• element_name – The name of the element

• value – The composition value [unit according to the constructor parameter]

class tc_python.diffusion.FunctionProfile(dictra_console_mode_function: str)
Bases: ElementProfile

Creates an initial concentration profile defined by a function in DICTRA Console Mode syntax.

Note: This is an advanced feature, preferably a complex concentration profile should be generated using third
party libraries and added to the simulation using tc_python.diffusion.PointByPointGrid .

get_type()→ str
The type of the element profile.

Returns
The type

class tc_python.diffusion.GeneralLowerHashinShtrikman

Bases: HomogenizationFunctions

General lower Hashin-Shtrikman bounds: the outermost shell consists of the phase with the most sluggish kinet-
ics.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

class tc_python.diffusion.GeneralLowerHashinShtrikmanExcludedPhase(excluded_phases: List[str] =
[])

Bases: HomogenizationFunctions

General lower Hashin-Shtrikman bounds: the outermost shell consists of the phase with the most sluggish kinet-
ics.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

The excluded phases are not considered when evaluating what phase has the most sluggish kinetics.

class tc_python.diffusion.GeneralUpperHashinShtrikman

Bases: HomogenizationFunctions

General upper Hashin-Shtrikman bounds: the innermost shell consists of the phase with the most sluggish ki-
netics.
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Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

class tc_python.diffusion.GeneralUpperHashinShtrikmanExcludedPhase(excluded_phases: List[str] =
[])

Bases: HomogenizationFunctions

General upper Hashin-Shtrikman bounds: the innermost shell consists of the phase with the most sluggish ki-
netics.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

The excluded phases are not considered when evaluating what phase has the most sluggish kinetics.

class tc_python.diffusion.GeometricGrid(no_of_points: int = 50, geometrical_factor: float = 1.1)
Bases: CalculatedGrid

Represents a geometric grid.

get_geometrical_factor()→ float
Returns the geometrical factor.

Returns
The geometrical factor

get_no_of_points()→ int
Returns the number of grid points.

Returns
The number of grid points

get_type()→ str
Returns the type of grid.

Returns
The type

set_geometrical_factor(geometrical_factor: float = 1.1)
Sets the geometrical factor.

Note: A geometrical factor larger than one yields a higher density of grid points at the lower end of the
region and a factor smaller than one yields a higher density of grid points at the upper end of the region.

Parameters
geometrical_factor – The geometrical factor

Returns
This GeometricGrid object

set_no_of_points(no_of_points: int = 50)
Sets the number of grid points.

Parameters
no_of_points – The number of points

Returns
This GeometricGrid object
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class tc_python.diffusion.GridPoint(distance: float)
Bases: object

Represents a grid point, this is used in combination with grids of the type tc_python.diffusion.
PointByPointGrid .

add_composition(element: str, value: float)
Adds a composition for the specified element to the grid point.

Parameters
• element – The element

• value – The composition value [unit as defined for the grid]

Returns
This GridPoint object

class tc_python.diffusion.HashinShtrikmanBoundMajority

Bases: HomogenizationFunctions

Hashin-Shtrikman bounds with majority phase as matrix phase: the outermost shell consists of the phase with
the highest local volume fraction.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

class tc_python.diffusion.HashinShtrikmanBoundMajorityExcludedPhase(excluded_phases: List[str]
= [])

Bases: HomogenizationFunctions

Hashin-Shtrikman bounds with majority phase as matrix phase: the outermost shell consists of the phase with
the highest local volume fraction.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

The excluded phases are not considered when evaluating what phase has the most sluggish kinetics.

class tc_python.diffusion.HashinShtrikmanBoundPrescribed(matrix_phase: str)
Bases: HomogenizationFunctions

Hashin-Shtrikman bounds with prescribed phase as matrix phase: the outermost shell consists of the prescribed
phase.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical
shells of each phase.

class tc_python.diffusion.HashinShtrikmanBoundPrescribedExcludedPhase(matrix_phase: str,
excluded_phases:
List[str] = [])

Bases: HomogenizationFunctions

class tc_python.diffusion.HomogenizationFunction(value)
Bases: Enum

Homogenization function used for the homogenization solver. Many homogenization functions are based on a
variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spherical shells of each
phase. Default: RULE_OF_MIXTURES (i.e. upper Wiener bounds)

166 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

GENERAL_LOWER_HASHIN_SHTRIKMAN = 0

General lower Hashin-Shtrikman bounds: the outermost shell consists of the phase with the most sluggish
kinetics.

GENERAL_UPPER_HASHIN_SHTRIKMAN = 1

General upper Hashin-Shtrikman bounds: the innermost shell consists of the phase with the most sluggish
kinetics.

HASHIN_SHTRIKMAN_BOUND_MAJORITY = 2

Hashin-Shtrikman bounds with majority phase as matrix phase: the outermost shell consists of the phase
with the highest local volume fraction.

INVERSE_RULE_OF_MIXTURES = 4

Lower Wiener bounds: the geometrical interpretation are continuous layers of each phase orthogonal to the
direction of diffusion

RULE_OF_MIXTURES = 3

Upper Wiener bounds: the geometrical interpretation are continuous layers of each phase parallel with the
direction of diffusion

class tc_python.diffusion.HomogenizationFunctions

Bases: object

classmethod general_lower_hashin_shtrikman()

Factory method that creates a new homogenization function of the type
GeneralLowerHashinShtrikman.

General lower Hashin-Shtrikman bounds: the outermost shell consists of the phase with the most sluggish
kinetics.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spher-
ical shells of each phase.

Returns
A new GeneralLowerHashinShtrikman object

classmethod general_lower_hashin_shtrikman_excluded_phase(excluded_phases: List[str] = [])
Factory method that creates a new homogenization function of the type
GeneralLowerHashinShtrikmanExcludedPhase.

General lower Hashin-Shtrikman bounds: the outermost shell consists of the phase with the most sluggish
kinetics.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spheri-
cal shells of each phase. The excluded phases are not considered when evaluating what phase has the most
sluggish kinetics.

Parameters
excluded_phases – The excluded phases

Returns
A new GeneralLowerHashinShtrikmanExcludedPhase object

classmethod general_upper_hashin_shtrikman()

Factory method that creates a new homogenization function of the type
GeneralUpperHashinShtrikman.

General upper Hashin-Shtrikman bounds: the innermost shell consists of the phase with the most sluggish
kinetics.
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Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spher-
ical shells of each phase.

Returns
A new GeneralUpperHashinShtrikman object

classmethod general_upper_hashin_shtrikman_excluded_phase(excluded_phases: List[str] = [])
Factory method that creates a new homogenization function of the type
GeneralUpperHashinShtrikmanExcludedPhase.

General upper Hashin-Shtrikman bounds: the innermost shell consists of the phase with the most sluggish
kinetics.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spheri-
cal shells of each phase. The excluded phases are not considered when evaluating what phase has the most
sluggish kinetics.

Parameters
excluded_phases – The excluded phases

Returns
A new GeneralUpperHashinShtrikmanExcludedPhase object

classmethod hashin_shtrikman_bound_majority()

Factory method that creates a new homogenization function of the type
HashinShtrikmanBoundMajority.

Hashin-Shtrikman bounds with majority phase as matrix phase: the outermost shell consists of the phase
with the highest local volume fraction.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spher-
ical shells of each phase.

Returns
A new HashinShtrikmanBoundMajority object

classmethod hashin_shtrikman_bound_majority_excluded_phase(excluded_phases: List[str] = [])
Factory method that creates a new homogenization function of the type
HashinShtrikmanBoundMajorityExcludedPhase.

Hashin-Shtrikman bounds with majority phase as matrix phase: the outermost shell consists of the phase
with the highest local volume fraction. Based on a variant of the Hashin-Shtrikman bounds, their geomet-
rical interpretation are concentric spherical shells of each phase. The excluded phases are not considered
when evaluating what phase has the most sluggish kinetics.

Parameters
excluded_phases – The excluded phases

Returns
A new HashinShtrikmanBoundMajorityExcludedPhase object

classmethod hashin_shtrikman_bound_prescribed(matrix_phase: str)
Factory method that creates a new homogenization function of the type
HashinShtrikmanBoundPrescribed .

Hashin-Shtrikman bounds with prescribed phase as matrix phase: the outermost shell consists of the pre-
scribed phase.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spher-
ical shells of each phase.
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Parameters
matrix_phase – The matrix phase

Returns
A new HashinShtrikmanBoundPrescribed object

classmethod hashin_shtrikman_bound_prescribed_excluded_phase(matrix_phase: str,
excluded_phases: List[str] =
[])

Factory method that creates a new homogenization function of the type
HashinShtrikmanBoundPrescribedExcludedPhase.

Hashin-Shtrikman bounds with prescribed phase as matrix phase: the outermost shell consists of the pre-
scribed phase.

Based on a variant of the Hashin-Shtrikman bounds, their geometrical interpretation are concentric spheri-
cal shells of each phase. The excluded phases are not considered when evaluating what phase has the most
sluggish kinetics.

Parameters
• matrix_phase – The matrix phase

• excluded_phases – The excluded phases

Returns
A new HashinShtrikmanBoundPrescribedExcludedPhase object

classmethod inverse_rule_of_mixtures()

Factory method that creates a new homogenization function of the type InverseRuleOfMixtures.

Lower Wiener bounds: the geometrical interpretation are continuous layers of each phase orthogonal to the
direction of diffusion.

Returns
A new InverseRuleOfMixtures object

classmethod inverse_rule_of_mixtures_excluded_phase(excluded_phases: List[str] = [])
Factory method that creates a new homogenization function of the type
InverseRuleOfMixturesExcludedPhase.

Lower Wiener bounds: the geometrical interpretation are continuous layers of each phase orthogonal to the
direction of diffusion. Excluded phases are not considered in the diffusion calculations.

Parameters
excluded_phases – The excluded phases

Returns
A new InverseRuleOfMixturesExcludedPhase object

classmethod labyrinth_factor_f(matrix_phase: str)
Factory method that creates a new homogenization function of the type LabyrinthFactorF.

The labyrinth factor functions implies that all diffusion takes place in a single continuous matrix phase. The
impeding effect on diffusion by phases dispersed in the matrix phase is taken into account by multiplying
the flux with the volume fraction of the matrix phase.

Parameters
matrix_phase – The matrix phase

Returns
A new LabyrinthFactorF object
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classmethod labyrinth_factor_f2(matrix_phase: str)
Factory method that creates a new homogenization function of the type LabyrinthFactorF2.

The labyrinth factor functions implies that all diffusion takes place in a single continuous matrix phase. The
impeding effect on diffusion by phases dispersed in the matrix phase is taken into account by multiplying
the flux with the volume fraction of the matrix phase squared.

Parameters
matrix_phase – The matrix phase

Returns
A new LabyrinthFactorF2 object

classmethod rule_of_mixtures()

Factory method that creates a new homogenization function of the type RuleOfMixtures.

Upper Wiener bounds: the geometrical interpretation are continuous layers of each phase parallel with the
direction of diffusion.

Returns
A new RuleOfMixtures object

classmethod rule_of_mixtures_excluded_phase(excluded_phases: List[str] = [])
Factory method that creates a new homogenization function of the type
RuleOfMixturesExcludedPhase.

Upper Wiener bounds: the geometrical interpretation are continuous layers of each phase parallel with the
direction of diffusion. Excluded phases are not considered in the diffusion calculations.

Parameters
excluded_phases – The excluded phases

Returns
A new RuleOfMixturesExcludedPhase object

class tc_python.diffusion.HomogenizationSolver

Bases: Solver

Solver using the Homogenization model.

Note: This solver always uses the homogenization model, even if all regions have only one phase. The solver
is significantly slower than the Classic model. Use the tc_python.diffusion.AutomaticSolver instead
if you do not need that behavior.

disable_global_minimization()

Disables global minimization to be used in equilibrium calculations. Default: Disabled

Note: In general, using global minimization significantly increases the simulation time, but there is also
a significantly reduced risk for non-converged equilibrium calculations.

Returns
A new HomogenizationSolver object
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disable_interpolation_scheme()

Configures the simulation not use any interpolation scheme. Default: To use the logarithmic interpolation
scheme with 10000 discretization steps

Note: The homogenization scheme can be switched on by using with_linear_interpolation_scheme or
with_logarithmic_interpolation_scheme.

enable_global_minimization()

Enables global minimization to be used in equilibrium calculations. Default: Disabled

Note: In general, using global minimization significantly increases the simulation time, but there is also
a significantly reduced risk for non-converged equilibrium calculations.

Returns
A new HomogenizationSolver object

get_type()→ str
The type of solver.

Returns
The type

set_fraction_of_free_memory_to_use(fraction: float)
Sets the maximum fraction of free physical memory to be used by the interpolation scheme. Default: 1 /
10 of the free physical memory

Parameters
fraction – The maximum free physical memory fraction to be used

Returns
A new HomogenizationSolver object

set_memory_to_use(memory_in_megabytes: float)
Sets the maximum physical memory in megabytes to be used by the interpolation scheme. Default: 1000
MBytes of the free physical memory

Parameters
memory_in_megabytes – The maximum physical memory to be used

Returns
A new HomogenizationSolver object

with_function(homogenization_function: HomogenizationFunctions)
Sets the homogenization function used by the homogenization model.

Parameters
homogenization_function – The homogenization function used by the homogenization
model

Returns
A new HomogenizationSolver object

with_linear_interpolation_scheme(steps: int = 10000)
Configures the simulation to use the linear interpolation scheme. Default: To use the logarithmic interpo-
lation scheme with 10000 discretization steps

6.1. Calculations 171



TC-Python Documentation, Release 2025b

Parameters
steps – The number of discretization steps in each dimension

Returns
A new HomogenizationSolver object

with_logarithmic_interpolation_scheme(steps: int = 10000)
Configures the simulation to use the linear interpolation scheme. Default: To use the logarithmic interpo-
lation scheme with 10000 discretization steps

Parameters
steps – The number of discretization steps in each dimension

Returns
A new HomogenizationSolver object

class tc_python.diffusion.InverseRuleOfMixtures

Bases: HomogenizationFunctions

Lower Wiener bounds: the geometrical interpretation are continuous layers of each phase orthogonal to the
direction of diffusion.

class tc_python.diffusion.InverseRuleOfMixturesExcludedPhase(excluded_phases: List[str] = [])
Bases: HomogenizationFunctions

Lower Wiener bounds: the geometrical interpretation are continuous layers of each phase orthogonal to the
direction of diffusion.

Excluded phases are not considered in the diffusion calculations.

class tc_python.diffusion.LabyrinthFactorF(matrix_phase: str)
Bases: HomogenizationFunctions

The labyrinth factor functions implies that all diffusion takes place in a single continuous matrix phase. The
impeding effect on diffusion by phases dispersed in the matrix phase is taken into account by multiplying the flux
with the volume fraction of the matrix phase.

class tc_python.diffusion.LabyrinthFactorF2(matrix_phase: str)
Bases: HomogenizationFunctions

The labyrinth factor functions implies that all diffusion takes place in a single continuous matrix phase. The
impeding effect on diffusion by phases dispersed in the matrix phase is taken into account by multiplying the flux
with the volume fraction of the matrix phase squared.

class tc_python.diffusion.LinearGrid(no_of_points: int = 50)
Bases: CalculatedGrid

Represents an equally spaced grid.

get_no_of_points()→ int
Returns the number of grid points.

Returns
The number of grid points

get_type()→ str
Type of the grid.

Returns
The type
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set_no_of_points(no_of_points: int = 50)
Sets the number of grid points.

Parameters
no_of_points – The number of points

Returns
This LinearGrid object

class tc_python.diffusion.LinearProfile(start_value: float, end_value: float)
Bases: ElementProfile

Represents a linear initial concentration profile.

get_type()→ str
The type of the element profile.

Returns
The type

class tc_python.diffusion.MixedZeroFluxAndActivity

Bases: BoundaryCondition

Represents a boundary having zero-flux as well as fixed-activity conditions.

Default: On that boundary for every element without an explicitly defined condition, a zero-flux boundary
condition is used.

get_type()→ str
The type of the boundary condition.

Returns
The type

set_activity_for_element(element_name: str, activity: str, to_time: float =
1.7976931348623157e+308)

Sets an activity expression for an element at the boundary. Enter a formula that the software evaluates
during the calculation.

The formula can be:

• a function of the variable TIME

• a constant

The formula must be written with these rules:

• a number must begin with a number (not a .)

• a number must have a dot or an exponent (E)

The operators +, -, *, /, ** (exponentiation) can be used and with any level of parenthesis. As shown, the
following operators must be followed by open and closed parentheses ()

• SQRT(X) is the square root

• EXP(X) is the exponential

• LOG(X) is the natural logarithm

• LOG10(X) is the base 10 logarithm

• SIN(X), COS(X), TAN(X), ASIN(X), ACOS(X), ATAN(X)

• SINH(X), COSH(X), TANH(X), ASINH(X), ACOSH(X), ATANH(X)
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• SIGN(X)

• ERF(X) is the error function

Default: the expression entered is used for the entire simulation.

Parameters
• element_name – The name of the element

• activity – The activity

• to_time – The max-time for which the activity is used.

set_zero_flux_for_element(element_name: str)
Sets a zero-flux condition for an element at the boundary. Default for all elements at the boundary
without an explicitly defined condition

Parameters
element_name – The name of the element

class tc_python.diffusion.Options

Bases: object

General simulation conditions for the diffusion calculations.

disable_forced_starting_values_in_equilibrium_calculations()

Disables forced starting values for the equilibrium calculations. The default is ‘en-
able_automatic_forced_starting_values_in_equilibrium_calculations’.

Returns
This Options object

disable_save_results_to_file()

Disables the saving of results to file during the simulation. Default: Saving of the results at every timestep

Returns
This Options object

enable_automatic_forced_starting_values_in_eq_calculations()

Lets calculation engine decide if forced start values for the equilibrium calculations should be used. This
is the default setting.

Returns
This Options object

enable_forced_starting_values_in_equilibrium_calculations()

Enables forced start values for the equilibrium calculations. The default is ‘en-
able_automatic_forced_starting_values_in_equilibrium_calculations’.

Returns
This Options object

enable_save_results_to_file(every_nth_step: int = -1)
Enables and configures saving of results to file during the simulation. They can be saved for every n-th or
optionally for every timestep (-1). Default: Saving of the results at every timestep

Parameters
every_nth_step – -1 or a value ranging from 0 to 99

Returns
This Options object
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enable_time_integration_method_automatic()

Enables automatic selection of integration method. This is the default method.

Returns
This Options object

enable_time_integration_method_euler_backwards()

Enables Euler backwards integration. The default method is en-
able_time_integration_method_automatic.

Note: This method is more stable but less accurate and may be necessary if large fluctuations occur in the
profiles.

Returns
This Options object

enable_time_integration_method_trapezoidal()

Enables trapezoidal integration.

Note: If large fluctuations occur in the profiles, it may be necessary to use the more stable but less accurate
Euler backwards method.

Returns
This Options object

set_default_driving_force_for_phases_allowed_to_form_at_interf(driving_force: float =
1e-05)

Sets the default required driving force for phases allowed to form at the interfaces. Default: 1.0e-5

Note: The required driving force (evaluated as DGM(ph)) is used for determining whether an inactive
phase is stable, i.e. actually formed. DGM represents the driving force normalized by RT and is dimen-
sionless.

Parameters
driving_force – The driving force (DGM(ph)) [-]

Returns
This Options object

class tc_python.diffusion.PointByPointGrid(unit_enum: Unit = Unit.MASS_PERCENT)
Bases: AbstractGrid

Represents a point-by-point grid. This is setting the grid and the compositions at once, it is typically used to
enter a measured composition profile or the result from a previous calculation.

Note: If a point-by-point grid is used, it is not necessary to specify the grid and composition profile separately.
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add_point(grid_point: GridPoint)
Adds a grid point to the grid.

Parameters
grid_point – The grid point

Returns
This PointByPointGrid object

get_type()→ str
Type of the grid.

Returns
The type

class tc_python.diffusion.Region(name: str)
Bases: object

Represents a region of the simulation domain that can contain more that one phase.

Note: The first added phase represents the matrix phase, while all later added phases are spheriod phases, i.e.
precipitate phases.

add_phase(phase_name: str, is_matrix_phase: bool = False)
Adds a phase to the region, each region must contain at least one phase.

Note: Normally the matrix phase and the precipitate phases are automatically chosen based on the
presence of all profile elements in the phase and if it has diffusion data. If multiple phases have equal
properties, the phase that was added first is chosen. The matrix phase can be explicitly set by using
is_matrix_phase=True.

Note: If multiple phases are added to a region, the homogenization model is applied. That means that
average properties of the local phase mixture are used.

Parameters
• phase_name – The phase name

• is_matrix_phase – If set to True this phase is explicitly set as matrix phase for the region,
if no phase is set to True, the matrix phase is chosen automatically

Returns
This Region object

add_phase_allowed_to_form_at_left_interface(phase_name: str, driving_force: float = 1e-05)
Adds a phase allowed to form at the left boundary of the region (an inactive phase). The phase will only
appear at the interface as a new automatic region if the driving force to form it is sufficiently high.

Parameters
• phase_name – The phase name

• driving_force – The driving force for the phase to form (DGM(ph))
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Returns
This Region object

add_phase_allowed_to_form_at_right_interface(phase_name: str, driving_force: float = 1e-05)
Adds a phase allowed to form at the right boundary of the region (an inactive phase). The phase will only
appear at the interface as a new automatic region if the driving force to form it is sufficiently high.

Parameters
• phase_name – The phase name

• driving_force – The driving force for the phase to form (DGM(ph))

Returns
This Region object

remove_all_phases()

Removes all previously added phases from the region.

Returns
This Region object

set_width(width: float)
Defined the width of the region.

Note: This method needs only to be used if a calculated grid has been defined (using with_grid()).

Parameters
width – The width [m]

Returns
This Region object

with_composition_profile(initial_compositions: CompositionProfile)
Defines the initial composition profiles for all elements in the region.

Note: This method needs only to be used if a calculated grid has been defined (using with_grid()).

Parameters
initial_compositions – The initial composition profiles for all elements

Returns
This Region object

with_grid(grid: CalculatedGrid)
Defines a calculated grid in the region. If measured composition profiles or the result from a previous cal-
culation should be used, instead with_point_by_point_grid_containing_compositions() needs
to be applied.

Note: The composition profiles need to be defined separately using with_composition_profile(),
additionally the region width needs to be specified using set_width().
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Parameters
grid – The grid

Returns
This Region object

with_point_by_point_grid_containing_compositions(grid: PointByPointGrid)
Defines a point-by-point grid in the region. This is setting the grid and the compositions at once, it is
typically used to enter a measured composition profile or the result from a previous calculation. If the
composition profile should be calculated (linear, geometric, . . . ) with_grid() should be used instead.

Note: If a point-by-point grid is used, with_grid(), with_composition_profile() and
set_width() are unnecessary and must not be used.

Parameters
grid – The point-by-point grid

Returns
This Region object

class tc_python.diffusion.RuleOfMixtures

Bases: HomogenizationFunctions

Upper Wiener bounds: the geometrical interpretation are continuous layers of each phase parallel with the di-
rection of diffusion.

class tc_python.diffusion.RuleOfMixturesExcludedPhase(excluded_phases: List[str] = [])
Bases: HomogenizationFunctions

Upper Wiener bounds: the geometrical interpretation are continuous layers of each phase parallel with the di-
rection of diffusion.

Excluded phases are not considered in the diffusion calculations.

class tc_python.diffusion.SimulationTime(value)
Bases: Enum

Specifying special time steps for the evaluation of diffusion results.

Note: These placeholders should be used because especially the actual last timestep will slightly differ from the
specified end time of the simulation.

FIRST = 0

Represents the first timestep of the simulation

LAST = 1

Represents the last timestep of the simulation

class tc_python.diffusion.Solver

Bases: AbstractSolver

Factory class providing objects representing a solver.
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classmethod automatic()

Factory method that creates a new automatic solver. This is the default solver and recommended for
most applications.

Note: This solver uses the homogenization model if any region has more than one phase, otherwise it uses
the classic model.

Returns
A new AutomaticSolver object

classmethod classic()

Factory method that creates a new classic solver.

Note: This solver never switches to the homogenization model even if the solver fails to converge. Use
the tc_python.diffusion.AutomaticSolver if necessary instead.

Returns
A new ClassicSolver object

classmethod homogenization()

Factory method that creates a new homogenization solver.

Note: This solver always uses the homogenization model, even if all regions have only one
phase. The solver is significantly slower than the Classic model. Use the tc_python.diffusion.
AutomaticSolver instead if you do not need that behavior.

Returns
A new HomogenizationSolver object

class tc_python.diffusion.StepProfile(lower_boundary: float, upper_boundary: float, step_at: float)
Bases: ElementProfile

Represents an initial constant concentration profile with a step at the specified position.

get_type()→ str
The type of the element profile.

Returns
The type

class tc_python.diffusion.TimestepControl

Bases: object

Settings that control the time steps in the simulation.

disable_check_interface_position()

Disables checking of the interface position, i.e. the timesteps are not controlled
by the phase interface displacement during the simulation. The default setting is
:func:`enable_automatic_check_interface_position`.
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Returns
This TimestepControl object

enable_automatic_check_interface_position()

Lets calculation engine decide if checking of the interface position should be used. This is the default
setting.

Returns
This TimestepControl object

enable_check_interface_position()

Enables checking of the interface position, i.e. the timesteps are controlled by the phase interface displace-
ment during the simulation. The default setting is :func:`enable_automatic_check_interface_position`.

Returns
This TimestepControl object

set_initial_time_step(initial_time_step: float = 1e-07)
Sets the initial timestep. Default: 1.0e-7 s

Parameters
initial_time_step – The initial timestep [s]

Returns
This TimestepControl object

set_max_absolute_error(absolute_error: float = 1e-05)
Sets the maximum absolute error. Default: 1.0e-5

Parameters
absolute_error – The maximum absolute error

Returns
This TimestepControl object

set_max_relative_error(relative_error: float = 0.05)
Sets the maximum relative error. Default: 0.05

Parameters
relative_error – The maximum relative error

Returns
This TimestepControl object

set_max_timestep_allowed_as_percent_of_simulation_time(max_timestep_allowed_as_percent_of_simulation_time:
float = 10.0)

The maximum timestep allowed during the simulation, specified in percent of the simulation time. Default:
10.0%

Parameters
max_timestep_allowed_as_percent_of_simulation_time – The maximum timestep
allowed [%]

Returns
This TimestepControl object

set_max_timestep_increase_factor(max_timestep_increase_factor: float = 2.0)
Sets the maximum timestep increase factor. Default: 2

Note: For example, if 2 is entered the maximum time step is twice as long as the previous time step taken.
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Parameters
max_timestep_increase_factor – The maximum timestep increase factor

Returns
This TimestepControl object

set_smallest_time_step_allowed(smallest_time_step_allowed: float = 1e-07)
Sets the smallest time step allowed during the simulation. This is required when using the automatic pro-
cedure to determine the time step. Default: 1.0e-7 s

Parameters
smallest_time_step_allowed – The smalles timestep allowed [s]

Returns
This TimestepControl object

class tc_python.diffusion.Unit(value)
Bases: Enum

Represents a composition unit.

MASS_FRACTION = 2

Mass fraction.

MASS_PERCENT = 3

Mass percent.

MOLE_FRACTION = 0

Mole fraction.

MOLE_PERCENT = 1

Mole percent.

U_FRACTION = 4

U fraction

6.1.7 Module “propertymodel”

class tc_python.propertymodel.PropertyModelCalculation(calculator)
Bases: AbstractCalculation

Configuration for a Property Model calculation.

Note: Specify the settings, the calculation is performed with calculate().

calculate(timeout_in_minutes: float = 0.0)→ PropertyModelResult
Runs the Property Model calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Calcula-
tionEngineException will be thrown.

Returns
A PropertyModelResult which later can be used to get specific values from the simulation.
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get_argument_default(argument_id: str)→ object
Returns the default value for the specified argument. The argument id can be obtained with
get_arguments().

Parameters
argument_id – The argument id

Returns
The default value (the type depends on the argument)

get_argument_description(argument_id: str)→ str
Returns the detailed description of the argument. The id can be obtained with get_arguments().

Parameters
argument_id – The argument id

Returns
The detailed description

get_arguments()→ Set[str]
Returns a list of the arguments of the Property Model.

Note: The arguments are the ‘UI-panel components’ defined in the Property Model interface method
provide_ui_panel_components(). They have the same id as specified in the Property Model. The
naming is different because there is no UI present.

Returns
The ids of the available arguments

get_dynamic_arguments()→ Set[str]
Returns a list of the dynamic arguments of the Property Model.

Note: Dynamic arguments are “extra” arguments created by pressing the “plus” button that can occur next
to the UI-panel for some models, when running the Property Model from within Thermo-Calc. You can
use them also from the API by invoke_dynamic_argument().

Returns
The ids of the available dynamic arguments

get_model_description()→ str
Returns the description text of the current model.

Returns
the description

get_model_parameter_value(model_parameter_id: str)→ float
Returns the current value of an optimizable model parameter. The id can be obtained with
get_model_parameters().

Parameters
model_parameter_id – The model parameter id

Returns
The current value [unit according to the parameter meaning]
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get_model_parameters()→ Set[str]
Returns a list of the optimizable model parameters.

Note: The model parameters are an optional set of variables that can be used within the Property
Model. Typically they are used to provide the possibility to inject parameter values during an optimiza-
tion into the model. This allows the dynamic development of Property Models that need to be fitted to
experimental data. The model parameters are controlled with the Property Model interface methods pro-
vide_model_parameters and set_model_parameter.

Returns
The ids of the optimizable model parameters

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

invoke_dynamic_argument(argument_id: str)
Increases the number of instances of this dynamic argument by one, the argument will have an id such as
argument_1, argument_2, . . . if the dynamic argument is called argument.

Note: You can obtain all available dynamic arguments by using get_dynamic_arguments().

Parameters
argument_id – argument_id: The argument id

Returns
This PropertyModelCalculation object

remove_all_conditions()

Removes all set classic POLY conditions.

Note: This does not affect the compositions set by set_composition().

Returns
This PropertyModelCalculation object

remove_dependent_element()

Removes a manually set dependent element. This method does not affect the automatic choice of the
dependent element if set_composition() is used.

Returns
This PropertyModelCalculation object
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set_argument(argument: str, value: str)
Sets the specified model argument to the specified value. The id can be obtained with get_arguments().

Parameters
• argument – The argument id

• value – The value [unit according to the argument meaning]

Returns
This PropertyModelCalculation object

set_composition(element_name: str, value: float)
Sets the composition of a element. The unit for the composition can be changed using
set_composition_unit().

Default: Mole percent (CompositionUnit.MOLE_PERCENT)

Parameters
• element_name – The element

• value – The composition value [composition unit defined for the calculation]

Returns
This PropertyModelCalculation object

set_composition_unit(unit_enum: CompositionUnit = CompositionUnit.MOLE_PERCENT)
Sets the composition unit.

Default: Mole percent (CompositionUnit.MOLE_PERCENT).

Parameters
unit_enum – The new composition unit

Returns
This PropertyModelCalculation object

set_condition(classic_condition: str, value: float)
Adds a classic POLY condition. If that method is used, all conditions need to be specified in
such a way. If this method is used, it is necessary to set the dependent element manually using
set_dependent_element().

Default if not specified: pressure P = 1e5 Pa, system size N = 1, Temperature T = 1000 K

Warning: It is not possible to mix POLY-commands and compositions using set_composition().

Note: It should not be necessary for most users to use this method, try to use set_composition()
instead.

Warning: As this method runs raw POLY-commands directly in the engine, it may hang the program
in case of spelling mistakes (e.g. forgotten parenthesis, . . . ).

Parameters
• classic_condition – The classic POLY condition (for example: X(CR))
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• value – The value of the condition

Returns
This PropertyModelCalculation object

set_dependent_element(dependent_element_name: str)
Sets the dependent element manually.

Note: It should not be necessary for most users to use this method. Setting the dependent element manually
is only necessary and allowed if set_condition() is used.

Parameters
dependent_element_name – The name of the dependent element

Returns
This PropertyModelCalculation object

set_model_parameter(model_parameter_id: str, value)
Resets an optimizable model parameter. The id can be obtained with get_model_parameters().

Parameters
• model_parameter_id – The model parameter id

• value – The new value of the parameter

Returns
This PropertyModelCalculation object

set_temperature(temperature: float = 1000)
Sets the temperature.

Default: 1000 K

Parameters
temperature – The temperature [K]

Returns
This PropertyModelCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This PropertyModelCalculation object
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class tc_python.propertymodel.PropertyModelResult(result)
Bases: AbstractResult

The result of a Property Model calculation.

get_result_quantities()→ Set[str]
Returns a list of the available result quantities defined in the Property Model.

Returns
The ids of the defined result quantities

get_result_quantity_description(result_quantity_id)→ str
Returns the detailed description of the result quantity. The id can be obtained by
get_result_quantities().

Parameters
result_quantity_id – The result quantity id

Returns
The detailed description

get_single_equilibrium_result(result_quantity_id: str = '')→ SingleEquilibriumResult
Returns a result quantity value. The available result quantities can be obtained by
get_result_quantities().

Parameters
result_quantity_id – The id of the result quantity.

Returns
The requested value [unit depending on the quantity], if the result is a SingleEquilibriumRe-
sult, is returned.

get_value_of(result_quantity_id: str)→ Union[float, Dict[str, float]]
Returns a result quantity value. The available result quantities can be obtained by
get_result_quantities().

Parameters
result_quantity_id – The id of the result quantity

Returns
The requested value [unit depending on the quantity]. If the result is parameterized,
parameter-value pairs are returned.

save_to_disk(path: str)
Saves the result to disk. The result can later be loaded using tc_python.server.SetUp.
load_result_from_disk().

Note: The result data is represented by a whole folder possibly containing multiple files.

Parameters
path – The path to the result folder, can be relative or absolute.

Returns
This PropertyModelResult object
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6.1.8 Module “material_to_material”

class tc_python.material_to_material.AbstractConstantCondition

Bases: object

The abstract base class for all constant conditions.

class tc_python.material_to_material.AbstractMaterialToMaterialCalculationAxis

Bases: object

The abstract base class of all calculation axis.

class tc_python.material_to_material.ConstantCondition

Bases: AbstractConstantCondition

A constant condition.

classmethod fraction_of_material_b(fraction_of_material_b: float = 0.5)
Creates a constant fraction of material B condition object.

Note: The unit depends on the composition unit setting in the calculator object.

Parameters
fraction_of_material_b – The fraction of material B [weight-fraction or mole-fraction]

Returns
The condition object

classmethod temperature(temperature: float = 1000)
Creates a constant temperature condition object.

Parameters
temperature – The temperature [K]

Returns
The condition object

class tc_python.material_to_material.FractionOfMaterialBAxis(from_fraction: float = 0.0,
to_fraction: float = 1.0,
start_fraction: float = 0.5)

Bases: MaterialToMaterialCalculationAxis

A fraction of material B axis.

class tc_python.material_to_material.FractionOfMaterialBCondition(fraction_of_material_b: float
= 0.5)

Bases: ConstantCondition

A constant fraction of material B condition.

class tc_python.material_to_material.MaterialToMaterialCalculationAxis

Bases: AbstractMaterialToMaterialCalculationAxis

A calculation axis.
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classmethod fraction_of_material_b(from_fraction: float = 0.0, to_fraction: float = 1.0,
start_fraction: float = 0.5)

Creates a fraction of material B axis object.

Note: The unit depends on the composition unit setting in the calculator.

Parameters
• from_fraction – The left axis limit [weight-fraction or mole-fraction]

• to_fraction – The right axis limit [weight-fraction or mole-fraction]

• start_fraction – The start fraction of the calculation [weight-fraction or mole-fraction]

Returns
A new FractionOfMaterialBAxis axis object

classmethod temperature(from_temperature: float = 1000, to_temperature: float = 3000,
start_temperature: float = 2000)

Creates a temperature calculation axis object.

Parameters
• from_temperature – The left axis limit [K]

• to_temperature – The right axis limit [K]

• start_temperature – The start temperature of the calculation [K]

Returns
A new TemperatureAxis condition object

class tc_python.material_to_material.MaterialToMaterialCalculationContainer(instance)
Bases: object

Provides access to the calculation objects for all Material to Material calculations.

These are specialised calculations for mixtures of two materials A and B. Otherwise they behave identical to the
corresponding regular single equilibrium, property diagram and phase diagram calculations.

with_phase_diagram_calculation(default_conditions: bool = True, components: List[str] = [])→
MaterialToMaterialPhaseDiagramCalculation

Creates a Material to Material phase diagram (map) calculation.

Parameters
• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new MaterialToMaterialPhaseDiagramCalculation object

with_property_diagram_calculation(default_conditions: bool = True, components: List[str] = [])→
MaterialToMaterialPropertyDiagramCalculation

Creates a Material to Material property diagram (step) calculation.

Parameters
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• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new MaterialToMaterialPropertyDiagramCalculation object

with_single_equilibrium_calculation(default_conditions: bool = True, components: List[str] = [])
→ MaterialToMaterialSingleEquilibriumCalculation

Creates a Material to Material single equilibrium calculation.

Parameters
• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new MaterialToMaterialSingleEquilibriumCalculation object

class tc_python.material_to_material.MaterialToMaterialPhaseDiagramCalculation(calculator)
Bases: AbstractPhaseDiagramCalculation

Configuration for a Material to Material phase diagram calculation.

Note: Specify the conditions, the calculation is performed with calculate().

add_initial_equilibrium(initial_equilibrium: InitialEquilibrium)

Add initial equilibrium start points from which a phase diagram is calculated.

Scans along the axis variables and generates start points when the scan procedure crosses a phase boundary.

It may take a little longer to execute than using the minimum number of start points, as some lines may
be calculated more than once. But the core remembers all node points and subsequently stops calculations
along a line when it finds a known node point.

It is also possible to create a sequence of start points from one initial equilibria.

Parameters
initial_equilibrium – The initial equilibrium

Returns
This MaterialToMaterialPhaseDiagramCalculation object

calculate(keep_previous_results: bool = False, timeout_in_minutes: float = 0.0)→
MaterialToMaterialPhaseDiagramResult

Performs the phase diagram calculation.

Warning: If you use keep_previous_results=True, you must not use another calculator or even get
results in between the calculations using calculate(). Then the previous results will actually be lost.

Parameters
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• keep_previous_results – If True, results from any previous call to this method are ap-
pended. This can be used to combine calculations with multiple start points if the mapping
fails at a certain condition.

• timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will be
unusable and a new TCPython block must be created for further calculations.

Returns
A new MaterialToMaterialPhaseDiagramResult object which later can be used to get
specific values from the calculated result.

disable_global_minimization()

Disables global minimization.

Default: Enabled

Returns
This MaterialToMaterialPhaseDiagramCalculation object

dont_keep_default_equilibria()

Do not keep the initial equilibria added by default.

This is only relevant in combination with add_initial_equilibrium().

This is the default behavior.

Returns
This MaterialToMaterialPhaseDiagramCalculation object

enable_global_minimization()

Enables global minimization.

Default: Enabled

Returns
This MaterialToMaterialPhaseDiagramCalculation object

get_components()→ List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns
The component names

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.
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get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

keep_default_equilibria()

Keep the initial equilibria added by default. This is only relevant in combination with
add_initial_equilibrium().

Default behavior is to not keep default equilibria.

Returns
This MaterialToMaterialPhaseDiagramCalculation object

remove_all_initial_equilibria()

Removes all previously added initial equilibria.

Returns
This MaterialToMaterialPhaseDiagramCalculation object

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This MaterialToMaterialPhaseDiagramCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_activities(activities: Dict[str, float])
Sets the constant activity conditions.

Note: The activity conditions are identical for both materials.

Parameters
activities – The constant activities

Returns
This MaterialToMaterialPhaseDiagramCalculation object
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set_composition_unit(unit: CompositionUnit = CompositionUnit.MASS_PERCENT)
Sets the composition unit of both materials A and B.

Default: Weight percent

Parameters
unit – The composition unit of both materials A and B

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_material_a(composition: Dict[str, float], dependent_component: Optional[str] = None)
Sets the composition of the material A.

The unit is set with set_composition_unit().

Tip: The material can also have constant activity conditions, they are set in set_activities().

Parameters
• composition – The composition of the material A

• dependent_component – The dependent component of the material A

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_material_b(composition: Dict[str, float], dependent_component: Optional[str] = None)
Sets the composition of the material B.

The unit is set with set_composition_unit().

Tip: The material can also have constant activity conditions, they are set in set_activities().

Parameters
• composition – The composition of the material B

• dependent_component – The dependent component of the material B

Returns
This MaterialToMaterialPhaseDiagramCalculation object
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set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This MaterialToMaterialPhaseDiagramCalculation object

set_pressure(pressure: float)
Sets the pressure (i.e. the condition P).

Note: If the flag default_conditions=True has been set during the creation of the calculator, the pressure
is set to 1000 hPa by default.

Parameters
pressure – The pressure [Pa]

Returns
This MaterialToMaterialPhaseDiagramCalculation object
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set_system_size(system_size: float)
Sets the system size (i.e. the condition ‘N’, the number of moles).

Note: If the flag default_conditions=True has been set during the creation of the calculator, the system
size is set to 1.0 moles by default.

Parameters
system_size – The system size [mole]

Returns
This MaterialToMaterialPhaseDiagramCalculation object

with_first_axis(axis: MaterialToMaterialCalculationAxis)
Sets the first axis (either temperature of fraction of material B). This calculation type requires that both
temperature and fraction of material B axis are set.

Parameters
axis – The axis

Returns
This MaterialToMaterialPhaseDiagramCalculation object

with_options(options: PhaseDiagramOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This PhaseDiagramCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.
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• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This MaterialToMaterialPhaseDiagramCalculation object

with_second_axis(axis: MaterialToMaterialCalculationAxis)
Sets the second axis (either temperature of fraction of material B). This calculation type requires that both
temperature and fraction of material B axis are set.

Parameters
axis – The axis

Returns
This MaterialToMaterialPhaseDiagramCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This MaterialToMaterialPhaseDiagramCalculation object

class tc_python.material_to_material.MaterialToMaterialPhaseDiagramResult(result)
Bases: PhaseDiagramResult

Result of a Material to Material phase diagram calculation, it can be evaluated using quantities or Console Mode
syntax.

add_coordinate_for_phase_label(x: float, y: float)
Sets a coordinate in the result plot for which the stable phases will be evaluated and provided in the result
data object. This can be used to plot the phases of a region into the phase diagram or just to programmati-
cally evaluate the phases in certain regions.

Warning: This method takes coordinates of the plot axes and not of the calculation axis.

Parameters
• x – The coordinate of the first plot axis (“x-axis”) [unit of the plot axis]

• y – The coordinate of the second plot axis (“y-axis”) [unit of the plot axis]

Returns
This MaterialToMaterialPhaseDiagramResult object
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get_values_grouped_by_quantity_of(x_quantity: Union[ThermodynamicQuantity, str], y_quantity:
Union[ThermodynamicQuantity, str])→
PhaseDiagramResultValues

Returns x-y-line data grouped by the multiple datasets of the specified quantities (for example in depen-
dency of components). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity. Usually the result data represents the phase diagram.

Note: The different datasets will contain NaN-values between different subsections and are not sorted
(because they are unsortable due to their nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuantity.
user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as an

alternative (for example ‘T’), MATERIAL_B_FRACTION, or even a function (for example
‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), MATERIAL_B_FRACTION, or even a function (for
example ‘CP=HM.T’)

Returns
The phase diagram data

get_values_grouped_by_stable_phases_of(x_quantity: Union[ThermodynamicQuantity, str],
y_quantity: Union[ThermodynamicQuantity, str])→
PhaseDiagramResultValues

Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID
+ FCC_A1”). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity. Usually the result data represents the phase diagram.

Note: The different datasets will contain NaN-values between different subsections and are not sorted
(because they are unsortable due to their nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuantity.
user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
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• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as an
alternative (for example ‘T’), MATERIAL_B_FRACTION, or even a function (for example
‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), MATERIAL_B_FRACTION, or even a function (for
example ‘CP=HM.T’)

Returns
The phase diagram data

remove_phase_labels()

Erases all added coordinates for phase labels.

Returns
This MaterialToMaterialPhaseDiagramResult object

save_to_disk(path: str)
Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later
be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this MaterialToMaterialPhaseDiagramResult object

set_phase_name_style(phase_name_style_enum: PhaseNameStyle = PhaseNameStyle.NONE)
Sets the style of the phase name labels that will be used in the result data object (constitution description,
ordering description, . . . ).

Default: PhaseNameStyle.NONE

Parameters
phase_name_style_enum – The phase name style

Returns
This MaterialToMaterialPhaseDiagramResult object

class tc_python.material_to_material.MaterialToMaterialPropertyDiagramCalculation(calculator)
Bases: AbstractPropertyDiagramCalculation

Configuration for a Material to Material property diagram calculation.

Note: Specify the conditions and possibly other settings, the calculation is performed with calculate().

calculate(keep_previous_results: bool = False, timeout_in_minutes: float = 0.0)→
MaterialToMaterialPropertyDiagramResult

Performs the Material to Material property diagram calculation.

Warning: If you use keep_previous_results=True, you must not use another calculator or even get
results in between the calculations using calculate(). Then the previous results will actually be lost.

Parameters
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• keep_previous_results – If True, results from any previous call to this method are ap-
pended. This can be used to combine calculations with multiple start points if the stepping
fails at a certain condition.

• timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will be
unusable and a new TCPython block must be created for further calculations.

Returns
A new MaterialToMaterialPropertyDiagramResult object which later can be used to
get specific values from the calculated result

disable_global_minimization()

Disables global minimization.

Default: Enabled

Returns
This MaterialToMaterialPropertyDiagramCalculation object

disable_step_separate_phases()

Disables step separate phases. This is the default setting.

Returns
This MaterialToMaterialPropertyDiagramCalculation object

enable_global_minimization()

Enables global minimization.

Default: Enabled

Returns
This MaterialToMaterialPropertyDiagramCalculation object

enable_step_separate_phases()

Enables step separate phases.

Default: By default separate phase stepping is disabled

Note: This is an advanced option, it is used mostly to calculate how the Gibbs energy for a number of
phases varies for different compositions. This is particularly useful to calculate Gibbs energies for complex
phases with miscibility gaps and for an ordered phase that is never disordered (e.g. SIGMA-phase, G-phase,
MU-phase, etc.).

Returns
This MaterialToMaterialPropertyDiagramCalculation object

get_components()→ List[str]
Returns the names of the components in the system (including all components auto-selected by the
database(s)).

Returns
The component names
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get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This MaterialToMaterialPropertyDiagramCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_activities(activities: Dict[str, float])
Sets the constant activity conditions.

Note: The activity conditions are identical for both materials.

Parameters
activities – The constant activities

Returns
This MaterialToMaterialPropertyDiagramCalculation object
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set_composition_unit(unit: CompositionUnit = CompositionUnit.MASS_PERCENT)
Sets the composition unit of both materials A and B.

Default: Weight percent

Parameters
unit – The composition unit of both materials A and B

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_material_a(composition: Dict[str, float], dependent_component: Optional[str] = None)
Sets the composition of the material A.

The unit is set with set_composition_unit().

Tip: The material can also have constant activity conditions, they are set in set_activities().

Parameters
• composition – The composition of the material A

• dependent_component – The dependent component of the material A

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_material_b(composition: Dict[str, float], dependent_component: Optional[str] = None)
Sets the composition of the material B.

The unit is set with set_composition_unit().

Tip: The material can also have constant activity conditions, they are set in set_activities().

Parameters
• composition – The composition of the material B

• dependent_component – The dependent component of the material B

Returns
This MaterialToMaterialPropertyDiagramCalculation object
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set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This MaterialToMaterialPropertyDiagramCalculation object

set_pressure(pressure: float)
Sets the pressure (i.e. the condition P).

Note: If the flag default_conditions=True has been set during the creation of the calculator, the pressure
is set to 1000 hPa by default.

Parameters
pressure – The pressure [Pa]

Returns
This MaterialToMaterialPropertyDiagramCalculation object
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set_system_size(system_size: float)
Sets the system size (i.e. the condition ‘N’, the number of moles).

Note: If the flag default_conditions=True has been set during the creation of the calculator, the system
size is set to 1.0 moles by default.

Parameters
system_size – The system size [mole]

Returns
This MaterialToMaterialPropertyDiagramCalculation object

with_axis(axis: MaterialToMaterialCalculationAxis)
Sets the axis (either temperature of fraction of material B). This calculation type requires that either tem-
perature or fraction of material B is set as a constant condition - the other one is set as an axis.

Parameters
axis – The axis

Returns
This MaterialToMaterialPropertyDiagramCalculation object

with_constant_condition(condition: ConstantCondition)
Sets the constant condition (either temperature of fraction of material B). This calculation type requires
that either temperature or fraction of material B is set as a constant condition - the other one is set as an
axis.

Parameters
condition – The condition

Returns
This MaterialToMaterialPropertyDiagramCalculation object

with_options(options: PropertyDiagramOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This MaterialToMaterialPropertyDiagramCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.
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For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.

• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This MaterialToMaterialPropertyDiagramCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This MaterialToMaterialPropertyDiagramCalculation object

class tc_python.material_to_material.MaterialToMaterialPropertyDiagramResult(result)
Bases: PropertyDiagramResult

Result of a Material to Material property diagram. It can be used to query for specific values.

get_values_grouped_by_quantity_of(x_quantity: Union[ThermodynamicQuantity, str], y_quantity:
Union[ThermodynamicQuantity, str], sort_and_merge: bool =
True)→ Dict[str, ResultValueGroup]

Returns x-y-line data grouped by the multiple datasets of the specified quantities (typically the phases). The
available quantities can be found in the documentation of the factory class ThermodynamicQuantity.

Note: The different datasets might contain NaN-values between different subsections and might not be
sorted even if the flag `sort_and_merge` has been set (because they might be unsortable due to their
nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuantity.
user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

6.1. Calculations 203



TC-Python Documentation, Release 2025b

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as an

alternative (for example ‘T’), MATERIAL_B_FRACTION, or even a function (for example
‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), MATERIAL_B_FRACTION, or even a function (for
example ‘CP=HM.T’)

• sort_and_merge – If True, the data is sorted and merged into as few subsections as pos-
sible (divided by NaN)

Returns
Containing the datasets with the quantities as their keys

get_values_grouped_by_stable_phases_of(x_quantity: Union[ThermodynamicQuantity, str],
y_quantity: Union[ThermodynamicQuantity, str],
sort_and_merge: bool = True)→ Dict[str,
ResultValueGroup]

Returns x-y-line data grouped by the sets of “stable phases” (for example “LIQUID” or “LIQUID
+ FCC_A1”). The available quantities can be found in the documentation of the factory class
ThermodynamicQuantity.

Note: The different datasets might contain NaN-values between different subsections and different lines of
an ambiguous dataset. They might not be sorted even if the flag `sort_and_merge` has been set (because
they might be unsortable due to their nature).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuantity.
user_defined_function, or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first quantity (“x-axis”), Console Mode syntax strings can be used as an

alternative (for example ‘T’), MATERIAL_B_FRACTION, or even a function (for example
‘f=T*1.01’)

• y_quantity – The second quantity (“y-axis”), Console Mode syntax strings can be used
as an alternative (for example ‘NV’), MATERIAL_B_FRACTION, or even a function (for
example ‘CP=HM.T’)

• sort_and_merge – If True, the data will be sorted and merged into as few subsections as
possible (divided by NaN)

Returns
Containing the datasets with the quantities as their keys
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get_values_of(x_quantity: Union[ThermodynamicQuantity, str], y_quantity:
Union[ThermodynamicQuantity, str])→ [List[float], List[float]]

Returns sorted x-y-line data without any separation. Use get_values_grouped_by_quantity_of() or
get_values_grouped_by_stable_phases_of() instead if you need such a separation. The available
quantities can be found in the documentation of the factory class ThermodynamicQuantity.

Note: This method will always return sorted data without any NaN-values. If it is unsortable that might
give data that is hard to interpret. In such a case you need to choose the quantity in another way or use one
of the other methods. One example of this is to use quantities with All-markers, for example MassFrac-
tionOfAComponent(“All”).

Note: Its possible to use functions as axis variables, either by using ThermodynamicQuantity.
user_defined_function(), or by using an expression that contains ‘=’.

Example get_values_grouped_by_quantity_of(‘T’, ThermodynamicQuan-
tity.user_defined_function(‘HM.T’))

Example get_values_grouped_by_quantity_of(‘T’, ‘CP=HM.T’)

Parameters
• x_quantity – The first thermodynamic quantity (“x-axis”), Console Mode syntax strings

can be used as an alternative (for example ‘T’, MATERIAL_B_FRACTION, or even a func-
tion (for example ‘f=T*1.01’).

• y_quantity – The second thermodynamic quantity (“y-axis”), Console Mode syntax
strings can be used as an alternative (for example ‘NV’), MATERIAL_B_FRACTION, or
even a function (for example ‘CP=HM.T’)

Returns
A tuple containing the x- and y-data in lists

save_to_disk(path: str)
Saves the result to disc. Note that a result is a folder, containing potentially many files. The result can later
be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this MaterialToMaterialPropertyDiagramResult object

set_phase_name_style(phase_name_style_enum: PhaseNameStyle = PhaseNameStyle.NONE)
Sets the style of the phase name labels that will be used in the result data object (constitution description,
ordering description, . . . ).

Default: PhaseNameStyle.NONE

Parameters
phase_name_style_enum – The phase name style

Returns
This MaterialToMaterialPropertyDiagramResult object

6.1. Calculations 205



TC-Python Documentation, Release 2025b

class tc_python.material_to_material.MaterialToMaterialSingleEquilibriumCalculation(calculator)
Bases: AbstractSingleEquilibriumCalculation

Configuration for a Material to Material single fraction of B calculation.

Note: Specify the conditions and possibly other settings, the calculation is performed with calculate().

calculate(timeout_in_minutes: float = 0.0)→ MaterialToMaterialSingleEquilibriumResult
Performs the material to material calculation.

Note: The calculation result is no temporary result object.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what is
wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a Unre-
coverableCalculationException will be thrown, the current TCPython-block will be unusable
and a new TCPython block must be created for further calculations.

Returns
A new MaterialToMaterialSingleEquilibriumResult object which can be used to get
specific values from the calculated result. It is undefined behavior to use that object after the
state of the calculation has been changed.

disable_global_minimization()

Turns the global minimization completely off.

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

enable_global_minimization()

Turns the global minimization on (using the default settings).

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

get_components()→ List[str]
Returns a list of components in the system (including all components auto-selected by the database(s)).

Returns
The components

get_gibbs_energy_addition_for(phase: str)→ float
Used to get the additional energy term (always being a constant) of a given phase. The value given is added
to the Gibbs energy of the (stoichiometric or solution) phase. It can represent a nucleation barrier, surface
tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
phase – Specify the name of the (stoichiometric or solution) phase with the addition

Returns
Gibbs energy addition to G per mole formula unit.
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get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

set_activities(activities: Dict[str, float])
Sets the constant activity conditions.

Note: The activity conditions are identical for both materials.

Parameters
activities – The constant activities

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_component_to_entered(component: str)
Sets the specified component to the status ENTERED, that is the default state.

Parameters
component – The component name or ALL_COMPONENTS

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_component_to_suspended(component: str, reset_conditions: bool = False)
Sets the specified component to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
• reset_conditions – if ‘True’ also remove composition conditions for the component if

they are defined

6.1. Calculations 207



TC-Python Documentation, Release 2025b

• component – The component name or ALL_COMPONENTS

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_composition_unit(unit: CompositionUnit = CompositionUnit.MASS_PERCENT)
Sets the composition unit of both materials A and B.

Default: Weight percent

Parameters
unit – The composition unit of both materials A and B

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_gibbs_energy_addition_for(phase: str, gibbs_energy: float)
Used to specify the additional energy term (always being a constant) of a given phase. The value
(gibbs_energy) given is added to the Gibbs energy of the (stoichiometric or solution) phase. It can rep-
resent a nucleation barrier, surface tension, elastic energy, etc.

It is not composition-, temperature- or pressure-dependent.

Parameters
• phase – Specify the name of the (stoichiometric or solution) phase with the addition

• gibbs_energy – Addition to G per mole formula unit

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_material_a(composition: Dict[str, float], dependent_component: Optional[str] = None)
Sets the composition of the material A.

The unit is set with set_composition_unit().

Tip: The material can also have constant activity conditions, they are set in set_activities().

Parameters
• composition – The composition of the material A

• dependent_component – The dependent component of the material A

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_material_b(composition: Dict[str, float], dependent_component: Optional[str] = None)
Sets the composition of the material B.

The unit is set with set_composition_unit().

Tip: The material can also have constant activity conditions, they are set in set_activities().

Parameters
• composition – The composition of the material B
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• dependent_component – The dependent component of the material B

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_phase_to_dormant(phase: str)
Sets the phase to the status DORMANT, necessary for calculating the driving force to form the specified
phase.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_phase_to_entered(phase: str, amount: float = 1.0)
Sets the phase to the status ENTERED, that is the default state.

Parameters
• phase – The phase name or ALL_PHASES for all phases

• amount – The phase fraction (between 0.0 and 1.0)

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_phase_to_fixed(phase: str, amount: float)
Sets the phase to the status FIXED, i.e. it is guaranteed to have the specified phase fraction after the
calculation.

Parameters
• phase – The phase name

• amount – The fixed phase fraction (between 0.0 and 1.0)

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_phase_to_suspended(phase: str)
Sets the phase to the status SUSPENDED, i.e. it is ignored in the calculation.

Parameters
phase – The phase name or ALL_PHASES for all phases

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

set_pressure(pressure: float)
Sets the pressure (i.e. the condition P).

Note: If the flag default_conditions=True has been set during the creation of the calculator, the pressure
is set to 1000 hPa by default.

Parameters
pressure – The pressure [Pa]

Returns
This MaterialToMaterialSingleEquilibriumCalculation object
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set_system_size(system_size: float)
Sets the system size (i.e. the condition ‘N’, the number of moles).

Note: If the flag default_conditions=True has been set during the creation of the calculator, the system
size is set to 1.0 moles by default.

Parameters
system_size – The system size [mole]

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

with_first_constant_condition(condition: ConstantCondition)
Sets the first constant condition (either temperature of fraction of material B).

Parameters
condition – The condition

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

with_options(options: SingleEquilibriumOptions)
Sets the simulation options.

Parameters
options – The simulation options

Returns
This SingleEquilibriumCalculation object

with_reference_state(component: str, phase: str = 'SER', temperature: float = -1.0, pressure: float =
100000.0)

The reference state for a component is important when calculating activities, chemical potentials and en-
thalpies and is determined by the database being used. For each component the data must be referred to a
selected phase, temperature and pressure, i.e. the reference state.

All data in all phases where this component dissolves must use the same reference state. However, different
databases can use different reference states for the same element/component. It is important to be careful
when combining data obtained from different databases.

By default, activities, chemical potentials and so forth are computed relative to the reference state used by
the database. If the reference state in the database is not suitable for your purposes, use this command to
set the reference state for a component using SER, i.e. the Stable Element Reference (which is usually set
as default for a major component in alloys dominated by the component). In such cases, the temperature
and pressure for the reference state is not needed.

For a phase to be usable as a reference for a component, the component needs to have the same composition
as an end member of the phase. The reference state is an end member of a phase. The selection of the end
member associated with the reference state is only performed once this command is executed.

If a component has the same composition as several end members of the chosen reference phase, then the
end member that is selected at the specified temperature and pressure will have the lowest Gibbs energy.

Parameters
• component – The name of the element must be given.

• phase – Name of a phase used as the new reference state. Or SER for the Stable Element
Reference.
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• temperature – The Temperature (in K) for the reference state. Or
CURRENT_TEMPERATURE which means that the current temperature is used at the
time of evaluation of the reference energy for the calculation.

• pressure – The Pressure (in Pa) for the reference state.

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

with_second_constant_condition(condition: ConstantCondition)
Sets the second constant condition (either temperature of fraction of material B).

Parameters
condition – The condition

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns
This MaterialToMaterialSingleEquilibriumCalculation object

class tc_python.material_to_material.MaterialToMaterialSingleEquilibriumResult(result)
Bases: SingleEquilibriumResult

Result of a Material To Material calculation for a single fraction of material B, it can be evaluated using a quantity
or Console Mode syntax.

change_pressure(pressure: float)
Change the pressure and re-evaluate the results from the equilibrium without minimizing Gibbs energy,
i.e. with higher performance. The properties are calculated at the new pressure using the phase amount,
temperature and composition of phases from the initial equilibrium. Use get_value_of() to obtain them.

Parameters
pressure – The pressure [Pa]

Returns
This MaterialToMaterialSingleEquilibriumResult object

change_temperature(temperature: float)
Change the temperature and re-evaluate the results from the equilibrium without minimizing Gibbs energy,
i.e. with high performance. The properties are calculated at the new temperature using the phase amount,
pressure and composition of phases from the initial equilibrium. Use get_value_of() to obtain them.

Note: This is typically used when calculating room temperature properties (e.g. density) for a material
when it is assumed that the equilibrium phase amount and composition freeze-in at a higher temperature
during cooling.
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Parameters
temperature – The temperature [K]

Returns
This MaterialToMaterialSingleEquilibriumResult object

get_components()→ List[str]
Returns the names of the components selected in the system (including any components auto-selected by
the database(s)).

Returns
The names of the selected components

get_conditions()→ List[str]
Returns the conditions.

Returns
The selected conditions

get_phases()→ List[str]
Returns the phases present in the system due to its configuration. It also contains all phases that
have been automatically added during the calculation, this is the difference to the method System.
get_phases_in_system().

Returns
The names of the phases in the system including automatically added phases

get_stable_phases()→ List[str]
Returns the stable phases (i.e. the phases present in the current equilibrium).

Returns
The names of the stable phases

get_value_of(quantity: Union[ThermodynamicQuantity, str])→ float
Returns a value from a single equilibrium calculation.

Parameters
quantity – The thermodynamic quantity to get the value of; a Console Mode syntax strings
can be used as an alternative (for example “NPM(FCC_A1)”)

Returns
The requested value

run_poly_command(command: str)
Runs a Thermo-Calc command from the Console Mode POLY module immediately in the engine. This
affects only the state of the result object.

Parameters
command – The Thermo-Calc Console Mode command

Returns
This MaterialToMaterialSingleEquilibriumResult object

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

212 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

save_to_disk(path: str)
Saves the result to disk. Note that the result is a folder, containing potentially many files. The result can
later be loaded with load_result_from_disk()

Parameters
path – the path to the folder you want the result to be saved in. It can be relative or absolute.

Returns
this MaterialToMaterialSingleEquilibriumResult object

class tc_python.material_to_material.TemperatureAxis(from_temperature: float = 1000,
to_temperature: float = 3000,
start_temperature: float = 2000)

Bases: MaterialToMaterialCalculationAxis

A temperature calculation axis.

class tc_python.material_to_material.TemperatureCondition(temperature: float = 1000.0)
Bases: ConstantCondition

A constant temperature condition.

6.1.9 Package “process_metallurgy”

6.1.9.1 Module “base”

class tc_python.process_metallurgy.base.AbstractAddition

Bases: object

The base class for representing an addition to an equilibrium calculation or process simulation.

get_composition()→ Dict[str, float]
Returns the composition of the addition - without containing a dependent component.

Returns
The composition [in the unit provided by getCompositionUnit()]

abstract get_composition_unit()

Returns the composition unit used in this addition.

Returns
The composition unit

get_dependent_component()→ str
Returns the dependent component.

Returns
The dependent component or an empty string if no dependent component is defined

get_elements()→ Set[str]
Returns all elements of the addition.

Returns
The elements
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get_id()→ str
Returns the unique ID of the addition.

Returns
The unique ID of the addition

get_temperature()→ float
Returns the temperature of the addition. This refers to the temperature before it is added to the process.

Returns
The temperature [K]

is_do_scale()→ bool
Returns if the composition of the addition is being scaled to 100% / 1 or not.

Returns
If the composition is scaled

is_empty()→ bool
Returns if the addition is “empty”, i.e., has zero amount.

Returns
If the addition is empty

class tc_python.process_metallurgy.base.ActivityReference(value)
Bases: Enum

The reference for a slag activity calculation. The actual reference phase depends on the com-
ponent for which the activity is request and can be obtained by using these methods on
the result object: tc_python.process_metallurgy.process.ProcessSimulationResult.
get_formula_for_activity_of_slag() or tc_python.process_metallurgy.equilibrium.
EquilibriumResult.get_formula_for_activity_of_slag().

LIQUID = 1

The reference is liquid slag.

SOLID = 0

The reference is solid slag.

class tc_python.process_metallurgy.base.PhaseGroup(value)
Bases: Enum

The phase group, such a group is collecting all phases that belong to a certain type.

ALL_METAL = 2

All metal phases.

ALL_SLAG = 5

All slag phases.

GAS = 6

All gas phases.

LIQUID_METAL = 0

All liquid metal phases.

LIQUID_SLAG = 4

All liquid slag phases.
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SOLID_METAL = 1

All solid metal phases.

SOLID_SLAG = 3

All solid slag phases.

class tc_python.process_metallurgy.base.ProcessDatabase(value)
Bases: Enum

The database used for a Process Metallurgy calculation.

LATEST = 0

The latest database available.

OXDEMO = 1

The database OXDEMO.

TCOX10 = 4

The database TCOX10.

TCOX11 = 5

The database TCOX11.

TCOX12 = 6

The database TCOX12.

TCOX13 = 7

The database TCOX13.

TCOX14 = 8

The database TCOX14.

TCOX8 = 2

The database TCOX8.

TCOX9 = 3

The database TCOX9.

get_name()→ str
Returns the name of the actually used database.

Tip: This is especially useful if LATEST is used.

Returns
The name of the database

class tc_python.process_metallurgy.base.ProcessMetallurgyOptions

Bases: SingleEquilibriumOptions

The options for a process metallurgy calculation.

disable_approximate_driving_force_for_metastable_phases()

Disables the approximation of the driving force for metastable phases.

Default: Enabled
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Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This ProcessMetallurgyOptions object

disable_control_step_size_during_minimization()

Disables step size control during minimization (non-global).

Default: Enabled

Returns
This ProcessMetallurgyOptions object

disable_force_positive_definite_phase_hessian()

Disables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled

Returns
This ProcessMetallurgyOptions object

enable_approximate_driving_force_for_metastable_phases()

Enables the approximation of the driving force for metastable phases.

Default: Enabled

Note: When enabled, the metastable phases are included in all iterations. However, these may not have
reached their most favorable composition and thus their driving forces may be only approximate.

If it is important that these driving forces are correct, use disable_approximate_driving_force_for_metastable_phases()
to force the calculation to converge for the metastable phases.

Returns
This ProcessMetallurgyOptions object

enable_control_step_size_during_minimization()

Enables step size control during normal minimization (non-global).

Default: Enabled

Returns
This ProcessMetallurgyOptions object

enable_force_positive_definite_phase_hessian()

Enables forcing of positive definite phase Hessian. This determines how the minimum of an equilibrium
state in a normal minimization procedure (non-global) is reached. For details, search the Thermo-Calc
documentation for “Hessian minimization”.

Default: Enabled
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Returns
This ProcessMetallurgyOptions object

set_global_minimization_max_grid_points(max_grid_points: int = 2000)
Sets the maximum number of grid points in global minimization. Only applicable if global minimization
is actually used.

Default: 2000 points

Parameters
max_grid_points – The maximum number of grid points

Returns
This ProcessMetallurgyOptions object

set_max_no_of_iterations(max_no_of_iterations: int = 2000)
Sets the maximum number of iterations for the CALPHAD minimizer.

Default: max. 2000 iterations

Note: As some models give computation times of more than 1 CPU second/iteration, this number is also
used to check the CPU time and the calculation stops if 500 CPU seconds/iterations are used.

Parameters
max_no_of_iterations – The max. number of iterations

Returns
This ProcessMetallurgyOptions object

set_process_minimization_policy(minimization_policy: ProcessMinimizationPolicy)
Sets the minimization policy for the process metallurgy calculation. It is possible to choose policies that
try different methods if one method fails.

Parameters
minimization_policy – The minimization policy to be used

Returns
This ProcessMetallurgyOptions object

set_required_accuracy(accuracy: float = 1e-06)
Sets the required relative accuracy.

Default: 1.0E-6

Note: This is a relative accuracy, and the program requires that the relative difference in each variable must
be lower than this value before it has converged. A larger value normally means fewer iterations but less
accurate solutions. The value should be at least one order of magnitude larger than the machine precision.

Parameters
accuracy – The required relative accuracy

Returns
This ProcessMetallurgyOptions object
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set_smallest_fraction(smallest_fraction: float = 1e-16)
Sets the smallest fraction for constituents that are unstable.

It is normally only in the gas phase that you can find such low fractions.

The default value for the smallest site-fractions is 1E-16 for all phases except for IDEAL phase with one
sublattice site (such as the GAS mixture phase in many databases) for which the default value is always as
1E-30.

Parameters
smallest_fraction – The smallest fraction for constituents that are unstable

Returns
This ProcessMetallurgyOptions object

class tc_python.process_metallurgy.base.ProcessMinimizationPolicy(value)
Bases: Enum

The policy for the CALPHAD minimization routine used in a calculation.

Note: This affects the runtime and stability of a calculation. Global minimization is more stable but more time-
consuming. Local minimization is much faster but can miss new phases coming up. Global test is a compromise
between both approaches.

GLOBAL = 0

Always use global minimization.

GLOBAL_TEST = 1

Always use global test.

GLOBAL_TEST__GLOBAL = 5

First try global test, if that fails use global minimization.

LOCAL = 2

Always use local minimization.

LOCAL__GLOBAL_TEST = 3

First try local minimization, if that fails use global test.

LOCAL__GLOBAL_TEST__GLOBAL = 4

First try local minimization, if that fails try global test and if that fails use global minimization.

class tc_python.process_metallurgy.base.SlagProperty(value)
Bases: Enum

The slag property, different definitions are available. The actual definition of a certain slag property for the
current system can be obtained using these methods on the result object: tc_python.process_metallurgy.
process.ProcessSimulationResult.getFormulaForSlagProperty() or tc_python.
process_metallurgy.equilibrium.EquilibriumResult.getFormulaForSlagProperty().

Note: If not all components required by the definition of slag property are available in a given system, the slag
property will return NaN.

B2 = 0

Basicity B2 (based on: CaO / SiO2).
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B3 = 1

Basicity B3 (based on: CaO / MgO / SiO2).

B4 = 3

Basicity B4 (based on: CaO / MgO / SiO2 / Al2O3).

BAS2 = 2

Basicity Bas2 (based on: CaO / MgO / SiO2 / Al2O3 / TiO2).

BELLS_RATIO = 4

Basicity Bell’s ratio (based on: CaO / MgO / SiO2 / Al2O3).

LOG_10_SULPHUR_CAPACITY = 5

Logarithmic sulphur capacity of the slag.

LS = 6

Sulphur capacity Ls of the slag.

class tc_python.process_metallurgy.base.SlagType(value)
Bases: Enum

The type of slag considered for a slag property calculation.

ALL = 2

The slag property is calculated for all slag, i.e. for both the liquid and solid slag.

LIQUID = 1

The slag property is calculated for all liquid slag.

SOLID = 0

The slag property is calculated for all solid slag.

6.1.9.2 Module “equilibrium”

class tc_python.process_metallurgy.equilibrium.AbstractEquilibriumAddition

Bases: AbstractAddition

The base class for representing an addition to an equilibrium calculation.

set_amount(amount: float)
Change the amount of the addition.

Parameters
amount – The new amount [in the amount unit of this addition]

Returns
This AbstractEquilibriumAddition object

set_component_composition(component: str, content: float)
Change the composition of a component of the addition.

Parameters
• component – The component to be changed

• content – The new content of the component [in the composition unit defined for this
addition]

Returns
This AbstractEquilibriumAddition object
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class tc_python.process_metallurgy.equilibrium.AdiabaticEquilibriumCalculation(calculator)
Bases: EquilibriumCalculation

An adiabatic Process Metallurgy equilibrium calculation. Such calculations can for example be used to deter-
mine the global equilibrium state of a process.

add_addition(addition: AbstractEquilibriumAddition)
Adds an addition to the calculation.

Parameters
addition – A EquilibriumAddition or EquilibriumGasAddition

Returns
This AdiabaticEquilibriumCalculation object

add_poly_command(command: str)
Adds a Thermo-Calc Console syntax POLY module command which will be executed when performing
the calculation using the calculate() method.

If multiple commands are added, they will be executed in the order of addition. Each command will only
be executed one.

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

Parameters
command – The POLY module command in Thermo-Calc console syntax

Returns
This AdiabaticEquilibriumCalculation object

calculate(timeout_in_minutes: float = 0.0)→ EquilibriumResult
Runs the Process Metallurgy equilibrium calculation.

Parameters
timeout_in_minutes – The calculation will be aborted after that time, default: no timeout

Returns
A new EquilibriumResult object

remove_addition(addition: AbstractEquilibriumAddition)
Removes an addition from the calculation.

Parameters
addition – The addition to be removed

Returns
This AdiabaticEquilibriumCalculation object

remove_all_additions()

Removes all additions from the calculation.

Returns
This AdiabaticEquilibriumCalculation object

220 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

set_pressure(pressure: float = 100000.0)
Sets the pressure.

Parameters
pressure – The pressure [Pa]

Returns
This AdiabaticEquilibriumCalculation object

with_options(options: ProcessMetallurgyOptions)
Sets the options for the calculation.

Parameters
options – The options

Returns
This AdiabaticEquilibriumCalculation object

class tc_python.process_metallurgy.equilibrium.EquilibriumAddition(composition: Dict[str, float],
amount: float, temperature:
float = 293.15,
composition_unit:
CompositionUnit = Compo-
sitionUnit.MASS_PERCENT,
do_scale: bool = False)

Bases: AbstractEquilibriumAddition

An addition to an equilibrium calculation.

Tip: By setting do_scale=True, the composition will be scaled to 100% / fraction of 1. This is useful if the
composition provided is not summing to 100% / 1. An example could be a slag addition which is provided like
this: 90 wt-% CaO - 5 wt-% Al2O3 - 4 wt-% SiO2.

Parameters
• composition – The composition

• amount – The amount [kg]

• temperature – The initial addition temperature (default: 20 °C) [K]

• composition_unit – The composition unit

• do_scale – If the composition is scaled to 100% / fraction of 1

get_amount()→ float
Returns the amount of this addition.

Returns
The amount [kg]

get_composition_unit()→ CompositionUnit
Returns the composition unit used in this addition.

Returns
The composition unit
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class tc_python.process_metallurgy.equilibrium.EquilibriumCalculation(metallurgical_reaction)
Bases: object

A Process Metallurgy equilibrium calculation. Such calculations can for example be used to determine the global
equilibrium state of a process.

abstract add_addition(addition: AbstractEquilibriumAddition)
Adds an addition to the calculation.

Parameters
addition – The addition

Returns
This EquilibriumCalculation object

abstract add_poly_command(command: str)
Adds a Thermo-Calc Console syntax POLY module command which will be executed when performing
the calculation using the calculate() method.

If multiple commands are added, they will be executed in the order of addition. Each command will only
be executed one.

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

Parameters
command – The POLY module command in Thermo-Calc console syntax

Returns
This EquilibriumCalculation object

abstract calculate(timeout_in_minutes: float = 0.0)→ EquilibriumResult
Runs the Process Metallurgy equilibrium calculation.

Parameters
timeout_in_minutes – The calculation will be aborted after that time, default: no timeout

Returns
A new EquilibriumResult object

abstract remove_addition(addition: AbstractEquilibriumAddition)
Removes an addition from the calculation.

Parameters
addition – The addition to be removed

Returns
This EquilibriumCalculation object

abstract remove_all_additions()

Removes all additions from the calculation.

Returns
This EquilibriumCalculation object

222 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

abstract set_pressure(pressure: float = 100000.0)
Sets the pressure.

Parameters
pressure – The pressure [Pa]

Returns
This EquilibriumCalculation object

update_addition(addition: AbstractEquilibriumAddition)
Replaces an already added addition with an updated one. This is usually used to change the composition or
amount of an addition while iterating over them. Typically, this is done for stepping or mapping calculations.

Note: The calculation must already contain the addition object to be updated.

Parameters
addition – The new addition containing updated values

Returns
This IsoThermalMetallurgyCalculation object

abstract with_options(options: ProcessMetallurgyOptions)
Sets the options for the calculation.

Parameters
options – The options

Returns
This EquilibriumCalculation object

class tc_python.process_metallurgy.equilibrium.EquilibriumGasAddition(composition: Dict[str,
float], amount: float,
temperature: float =
293.15, amount_unit:
GasAmountUnit =
GasAmountU-
nit.NORM_CUBIC_METER,
composition_unit:
GasCompositionUnit =
GasCompositio-
nUnit.VOLUME_PERCENT,
do_scale: bool = False)

Bases: AbstractEquilibriumAddition

A gas addition to an equilibrium calculation.

Tip: By setting do_scale=True, the composition will be scaled to 100% / fraction of 1. This is useful if the
composition provided is not summing to 100% / 1. An example could be a gas addition which is provided like
this: 90 vol–% Ar - 10 vol-% O2.

get_amount()→ float
Returns the amount of this addition.
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Note: The amount unit can be obtained using get_amount_unit().

Returns
The amount [in the amount unit]

get_amount_unit()→ GasAmountUnit
Returns the amount unit used in this addition.

Returns
The amount unit

get_composition_unit()→ GasCompositionUnit
Returns the composition unit used in this addition.

Returns
The composition unit

class tc_python.process_metallurgy.equilibrium.EquilibriumResult(result)
Bases: AbstractResult

The result of a Process Metallurgy equilibrium calculation.

get_activity_of_slag(component: str, reference: ActivityReference = ActivityReference.LIQUID)→
float

Returns the activity of a component in the slag.

Parameters
• component – The component

• reference – The reference for the activity, can be liquid or solid slag, default: liquid
slag

Returns
The activity of the component [-]

get_amount()→ float
Returns the total amount.

Returns
The total amount [kg]

get_amount_of_elements()→ Dict[str, float]
Returns the amount of each element.

Returns
The amount of the elements [kg]

get_amount_of_phase_groups()→ Dict[PhaseGroup, float]
Returns the amount of each phase group (e.g., for example all liquid slag).

Returns
The amount of the phase groups [kg]

get_amount_of_phases()→ Dict[str, float]
Returns the amount of each phase.

Returns
The amount of the phases [kg]
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get_components()→ Set[str]
Returns all components defined for the elements present in this result.

Returns
The components present in this result

get_composition(composition_unit: CompositionUnit = CompositionUnit.MASS_PERCENT)→ Dict[str,
float]

Returns the composition of the result.

Parameters
composition_unit – The composition unit, default: mass percent

Returns
The composition

get_composition_of_phase(phase: str, composition_unit: CompositionUnit =
CompositionUnit.MASS_PERCENT, composition_type: CompositionType =
CompositionType.COMPONENT)→ Dict[str, float]

Returns the composition of a phase in the result.

Parameters
• phase – The phase name

• composition_unit – The composition unit, default: mass percent
• composition_type – Defines if the composition is given by element (e.g., 75 wt-% Fe -

25 wt-% Cr) or by component (e.g. 65 wt-% Al2O3 - 35 wt-% CaO). In case of a metallic
phase, the composition is given by element even if component is selected. Default: by
component.

Returns
The composition

get_composition_of_phase_group(phase_group: PhaseGroup, composition_unit: CompositionUnit =
CompositionUnit.MASS_PERCENT, composition_type:
CompositionType = CompositionType.COMPONENT)→ Dict[str,
float]

Returns the composition of a phase group (e.g., all liquid slag) in the result.

Parameters
• phase_group – The phase group

• composition_unit – The composition unit, default: mass percent
• composition_type – Defines if the composition is given by element (e.g., 75 wt-% Fe -

25 wt-% Cr) or by component (e.g. 65 wt-% Al2O3 - 35 wt-% CaO). In case of a metallic
phase, the composition is given by element even if component is selected. Default: by
component.

Returns
The composition

get_elements()→ Set[str]
Returns all elements defined for the result.

Returns
All elements present in this result
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get_formula_for_activity_of_slag(component: str, reference: ActivityReference =
ActivityReference.LIQUID)→ str

Returns the Thermo-Calc Console syntax formula used for calculating the activity of a component in the
slag (e.g. AC(AL2O3, IONIC_LIQ). The actual activity can be obtained using get_activity_of_slag().

Parameters
• component – The component

• reference – The reference for the activity, can be liquid or solid slag, default: liquid
slag

Returns
The formula for calculating the activity

get_formula_for_slag_property(slag_property: SlagProperty, slag_type: SlagType = SlagType.ALL)
→ str

Returns the Thermo-Calc Console syntax formula used for calculating a property of the slag (e.g.
B(CAO)/B(SIO2). The actual slag property can be obtained using get_slag_property().

Parameters
• slag_property – The slag property

• slag_type – The part of the slag for which the property will be calculated. Can be all
slag, the liquid or the solid slag. Default: all slag

Returns
The formula for calculating the slag property

get_fraction_of_phase_groups(unit: PhaseUnit = PhaseUnit.MASS_FRACTION)→ Dict[PhaseGroup,
float]

Returns the fraction of the phase groups (e.g., all liquid slag) in the result.

Parameters
unit – The unit of the fraction, default: volume fraction

Returns
The phase fractions

get_fraction_of_phases(unit: PhaseUnit = PhaseUnit.MASS_FRACTION)→ Dict[str, float]
Returns the fraction of the stable phases in the result.

Parameters
unit – The unit of the fraction, default: volume fraction

Returns
The phase fractions

get_gas_components()→ Set[str]
Returns all components of the gas phase defined for the elements present in this result.

Returns
The components of the gas phase present in this result

get_oxygen_partial_pressure()→ float
Returns the partial pressure of oxygen in the result.

Returns
The partial pressure [Pa]
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get_pressure()→ float
Returns the pressure in the result.

Returns
The pressure [Pa]

get_slag_property(slag_property: SlagProperty, slag_type: SlagType = SlagType.ALL)→ float
Returns a property of the slag. These properties are mostly used to describe the property of a slag to pick
up sulfur.

Parameters
• slag_property – The slag property

• slag_type – The part of the slag for which the property will be calculated. Can be all
slag, the liquid or the solid slag. Default: all slag

Returns
The slag property [unit depending on the property]

get_stable_phases()→ Set[str]
Returns the stable phases in the result.

Returns
The stable phases

get_stable_phases_in_phase_group(phase_group: PhaseGroup)→ Set[str]
Returns the stable phases of a phase group (e.g., all liquid slag) in the result.

Parameters
phase_group – The phase group

Returns
The stable phases

get_temperature()→ float
Returns the temperature in the result.

Returns
The temperature [K]

get_value_of(classic_expression: str)→ float
Returns a value for a thermodynamic quantity.

Warning: It should normally not be required to use this method, use the appropriate method available
in the API instead.

Parameters
classic_expression – The thermodynamic quantity to get the value of in Thermo-Calc
Console Mode syntax (for example “NPM(FCC_A1)”)

Returns
The requested value

get_viscosity_dynamic_of_phase(phase: str)→ float
Returns the dynamic viscosity of a phase in the result.

Parameters
phase – The phase name

6.1. Calculations 227



TC-Python Documentation, Release 2025b

Returns
The dynamic viscosity [Pa*s]

get_viscosity_kinematic_of_phase(phase: str)→ float
Returns the kinematic viscosity of a phase in the result.

Parameters
phase – The phase name

Returns
The kinematic viscosity [m**2/s]

class tc_python.process_metallurgy.equilibrium.IsoThermalEquilibriumCalculation(calculation)
Bases: EquilibriumCalculation

An isothermal Process Metallurgy equilibrium calculation. Such calculations can for example be used to deter-
mine the global equilibrium state of a process.

add_addition(addition: AbstractEquilibriumAddition)
Adds an addition to the calculation.

Parameters
addition – A EquilibriumAddition or EquilibriumGasAddition

Returns
This IsoThermalEquilibriumCalculation object

add_poly_command(command: str)
Adds a Thermo-Calc Console syntax POLY module command which will be executed when performing
the calculation using the calculate() method.

If multiple commands are added, they will be executed in the order of addition. Each command will only
be executed one.

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw Thermo-Calc commands directly in the engine, it may hang the
program in case of spelling mistakes (e.g. forgotten equals sign).

Parameters
command – The POLY module command in Thermo-Calc console syntax

Returns
This IsoThermalEquilibriumCalculation object

calculate(timeout_in_minutes: float = 0.0)→ EquilibriumResult
Runs the Process Metallurgy equilibrium calculation.

Parameters
timeout_in_minutes – The calculation will be aborted after that time, default: no timeout

Returns
A new EquilibriumResult object
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remove_addition(addition: AbstractEquilibriumAddition)
Removes an addition from the calculation.

Parameters
addition – The addition to be removed

Returns
This IsoThermalEquilibriumCalculation object

remove_all_additions()

Removes all additions from the calculation.

Returns
This IsoThermalEquilibriumCalculation object

set_pressure(pressure: float = 100000.0)
Sets the pressure.

Parameters
pressure – The pressure [Pa]

Returns
This IsoThermalEquilibriumCalculation object

set_temperature(temperature: float)
Sets the temperature.

Parameters
temperature – The temperature [K]

Returns
This IsoThermalEquilibriumCalculation object

update_addition(addition: AbstractEquilibriumAddition)
Replaces an already added addition with an updated one.

Tip: This is usually used to change the composition or amount of an addition while iterating over multiple
values. Typically, this is done for stepping or mapping calculations.

Note: The calculation must already contain the addition object to be updated.

Parameters
addition – A previously added addition object with the updated values

Returns
This IsoThermalEquilibriumCalculation object

with_options(options: ProcessMetallurgyOptions)
Sets the options for the calculation.

Parameters
options – The options

Returns
This IsoThermalEquilibriumCalculation object
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6.1.9.3 Module “process”

class tc_python.process_metallurgy.process.AbstractContinuousAddition

Bases: AbstractProcessAddition

The base class representing an addition in a process simulation that is added continuously over a period of time.

class tc_python.process_metallurgy.process.AbstractProcessAddition

Bases: AbstractAddition

The base class for representing an addition in a process simulation.

class tc_python.process_metallurgy.process.AbstractSingleTimeAddition

Bases: AbstractProcessAddition

The base class representing an addition in a process simulation that is added at a distinct time point.

class tc_python.process_metallurgy.process.BulkZone(density: float, phase_group_to_transfer:
PhaseGroup, name: str)

Bases: Zone

A bulk zone in a process simulation, this is representing a large volume in the process, for example the steel
melt or the top slag. A zone is a volume in a process that has identical temperature and composition. It has
well-defined boundaries to other zones.

Tip: This is a generic class and seldom used directly. Use instead MetalBulkZone or SlagBulkZone.

add_addition(addition: AbstractSingleTimeAddition, time: float = 0.0)
Adds a single-time addition at the specified time point to the zone. The addition will be dissolved immedi-
ately.

Parameters
• addition – A SingleTimeAddition or SingleTimeGasAddition

• time – The time point [s]

Returns
This BulkZone object

add_continuous_addition(addition: AbstractContinuousAddition, from_time: float = 0.0, to_time: float =
nan)

Adds a constant addition continuously during the specified time period to the zone. All added material will
be dissolved immediately.

Parameters
• addition – A ContinuousAddition or ContinuousGasAddition

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This BulkZone object

add_power(power: float, from_time: float = 0.0, to_time: float = nan)
Adds a constant power during a specified time period to the zone (for example heating or cooling).

Parameters

230 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

• power – The power [W]

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This BulkZone object

disable_degassing()

Disables degassing for this zone, i.e. all gas formed at any time step will be staying in this zone.

Returns
This BulkZone object

enable_degassing()

Enables degassing for this zone, i.e. any gas formed at any time step will be removed after that time step.
This gas will be transferred into the exhaust gas zone. This is the default.

Returns
This BulkZone object

get_density()→ float
Returns the density of the zone

Returns
The density [kg/m**3]

get_elements()→ Set[str]
Returns the elements present in the zone. The elements are determined by the additions.

Returns
The elements

get_id()→ str
Returns the unique id of the zone. :return: The zone id

get_phase_group_to_transfer()→ PhaseGroup
Returns the phase group that is transferred from the attached reaction zones back to this zone after each
time step.

Returns
The phase group

is_degassing_enabled()→ bool
Returns if degassing is enabled in the zone.

Returns
If degassing is enabled

class tc_python.process_metallurgy.process.ContinuousAddition(composition: Dict[str, float], rate:
float, temperature: float = 293.15,
composition_unit:
CompositionUnit = Compositio-
nUnit.MASS_PERCENT, do_scale:
bool = False)

Bases: AbstractContinuousAddition

An addition in a process simulation that is added continuously during a period of time.

It is assumed that the material added during that period is dissolved instantaneously.
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Tip: By setting do_scale=True, the composition will be scaled to 100% / fraction of 1. This is useful
if the composition provided is not scaling to 100% / 1. An example could be a slag addition which is
provided like this: 90 wt-% CaO - 5 wt-% Al2O3 - 4 wt-% SiO2.

Parameters
• composition – The composition

• rate – The rate of addition [kg/s]

• temperature – The initial addition temperature (default: 20 °C) [K]

• composition_unit – The composition unit

• do_scale – If the composition is scaled to 100% / fraction of 1

get_composition_unit()→ CompositionUnit
Returns the composition unit used in this addition.

Returns
The composition unit

get_rate()→ float
Returns the rate of addition.

Returns
The addition rate [kg/s]

class tc_python.process_metallurgy.process.ContinuousGasAddition(composition: Dict[str, float],
rate: float, temperature: float =
293.15, rate_unit: GasRateUnit
= GasRateU-
nit.NORM_CUBIC_METER_PER_SEC,
composition_unit:
GasCompositionUnit =
GasCompositio-
nUnit.VOLUME_PERCENT,
do_scale: bool = False)

Bases: AbstractContinuousAddition

A gas addition in a process simulation that is added continuously during a period of time.

It is assumed that the gas added during that period is dissolved instantaneously.

Tip: By setting do_scale=True, the composition will be scaled to 100% / fraction of 1. This is useful if the
composition provided is not scaling to 100% / 1. An example could be a gas addition which is provided like this:
90 vol–% Ar - 10 vol-% O2.

get_composition_unit()→ GasCompositionUnit
Returns the composition unit used in this addition.

Returns
The composition unit
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get_rate()→ float
Returns the rate of addition.

Note: The rate unit can be obtained using get_rate_unit().

Returns
The addition rate [in the rate unit]

get_rate_unit()→ GasRateUnit
Returns the rate unit used in this addition.

Returns
The rate unit

class tc_python.process_metallurgy.process.ExhaustGasResult(result)
Bases: object

A result representing the exhaust gas zone, here all exhaust gas generated during the process is accumulated.

The data is returned for each time point of the process simulation. These time points can be obtained from this
method: ProcessSimulationResult.get_time_points().

get_amount()→ List[float]
Returns the amount of exhaust gas present at each time point.

This is the amount of gas accumulated since the beginning of the process.

Returns
The accumulated amount of gas at each time point [kg]

get_amount_of_components()→ Dict[str, List[float]]
Returns the amount of each exhaust gas component present at each time point.

This is the amount of gas accumulated since the beginning of the process. This is different from the current
composition at each time point obtained using get_composition().

Returns
The accumulated amount of each gas component at each time point [kg]

get_composition(composition_type: CompositionType = CompositionType.COMPONENT, unit:
CompositionUnit = CompositionUnit.MASS_PERCENT)→ Dict[str, List[float]]

Returns the current composition of the exhaust gas zone at each time point. This is the com-
position at each time point. This is different from the accumulated amount obtained using
get_amount_of_components().

Parameters
• composition_type – The type of the composition, can be by gas component or by ele-

ment, default: by gas component
• unit – The composition unit, default: mass percent

Returns
The current composition of the gas components at each time point

get_pressure()→ List[float]
Returns the pressure of the exhaust gas zone at each time point.
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Returns
The pressure [Pa]

get_stable_phases()→ Set[str]
Returns the stable phases within the exhaust gas zone at each time point.

Returns
The stable phases

get_temperature()→ List[float]
Returns the temperature of the exhaust gas at each time point.

Returns
The temperature at each time point [K]

class tc_python.process_metallurgy.process.MassTransferCoefficients

Bases: object

The mass transfer coefficients between a reaction zone and a bulk zone vs. time.

add(mass_transfer_coefficient: float, time: float = 0.0)
Adds the mass transfer coefficient valid beginning at a time point.

This value is valid until another value is defined for a later time point.

Parameters
• mass_transfer_coefficient – The mass transfer coefficient [m/s]

• time – The time-point where the mass transfer coefficient begins to be valid [s]

Returns
This MassTransferCoefficients object

class tc_python.process_metallurgy.process.MetalBulkZone(density: float)
Bases: Zone

A metallic bulk zone in a process simulation.

This is representing a large volume in the process, for example the steel melt. A zone is a volume in a process
that has identical temperature and composition. It has well-defined boundaries to other zones.

The name of this zone is automatically defined and unique.

add_addition(addition: AbstractSingleTimeAddition, time: float = 0.0)
Adds a single-time addition at the specified time point to the zone. The addition will be dissolved immedi-
ately.

Parameters
• addition – A SingleTimeAddition or SingleTimeGasAddition

• time – The time point [s]

Returns
This MetalBulkZone object

add_continuous_addition(addition: AbstractContinuousAddition, from_time: float = 0.0, to_time: float =
nan)

Adds a constant addition continuously during the specified time period to the zone. All added material will
be dissolved immediately.

Parameters
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• addition – A ContinuousAddition or ContinuousGasAddition

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This MetalBulkZone object

add_power(power: float, from_time: float = 0.0, to_time: float = nan)
Adds a constant power during a specified time period to the zone (for example heating or cooling).

Parameters
• power – The power [W]

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This MetalBulkZone object

disable_degassing()

Disables degassing for this zone, i.e. all gas formed at any time step will be staying in this zone.

Returns
This MetalBulkZone object

enable_degassing()

Enables degassing for this zone, i.e. any gas formed at any time step will be removed after that time step.
This gas will be transferred into the exhaust gas zone. This is the default.

Returns
This MetalBulkZone object

get_density()→ float
Returns the density of the zone

Returns
The density [kg/m**3]

get_elements()→ Set[str]
Returns the elements present in the zone. The elements are determined by the additions.

Returns
The elements

get_id()→ str
Returns the unique name / id of the zone.

Returns
The zone name / id

get_phase_group_to_transfer()→ PhaseGroup
Returns the phase group that is transferred from the attached reaction zones back to this zone after each
time step.

Returns
The phase group
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is_degassing_enabled()→ bool
Returns if degassing is enabled in the zone.

Returns
If degassing is enabled

class tc_python.process_metallurgy.process.ProcessSimulationCalculation(calculation)
Bases: object

A Process Metallurgy process simulation. Such calculations represent complete metallurgical processes with
several zones and simulate their evolution over time.

calculate(timeout_in_minutes: float = 0.0)→ ProcessSimulationResult
Runs the Process Metallurgy process simulation.

Parameters
timeout_in_minutes – The calculation will be aborted after that time, default: no timeout

Returns
A new ProcessSimulationResult object

set_end_time(end_time: float)
Sets the end time of a process.

Parameters
end_time – The end time point [s]

Returns
This ProcessSimulationCalculation object

set_initial_time_step(initial_time_step: float = 1.0)
Sets the initial time step used in the process simulation.

Note: All later time steps are automatically determined to limit the expected temperature change during
that step, this is controlled by set_max_allowed_temp_change_per_step().

Parameters
initial_time_step – The initial time step [s]

Returns
This ProcessSimulationCalculation object

set_max_allowed_temp_change_per_step(max_allowed_temp_change: float = 10.0)
The maximum allowed temperature change per time step. This is implicitly also limiting the composition
change during a time step and required for numerical stability.

Parameters
max_allowed_temp_change – The maximum allowed temperature change [K]

Returns
This ProcessSimulationCalculation object

set_max_time_step(max_time_step: float = 180.0)
The maximum time step chosen by the automatic time step control.

Note: All time steps are automatically determined to limit the expected temperature change during that
step, this is controlled by set_max_allowed_temp_change_per_step().
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Parameters
max_time_step – The maximum time step [s]

Returns
This ProcessSimulationCalculation object

set_min_time_step(min_time_step: float = 1.0)
The minimum time step chosen by the automatic time step control.

Note: All time steps are automatically determined to limit the expected temperature change during that
step, this is controlled by set_max_allowed_temp_change_per_step().

Parameters
min_time_step – The minimum time step [s]

Returns
This ProcessSimulationCalculation object

set_pressure(pressure: float = 100000.0)
Sets a constant pressure during the complete process.

Parameters
pressure – The pressure [Pa]

Returns
This ProcessSimulationCalculation object

set_pressure_in_time_period(pressure_in_pa: float, from_time: float = 0.0, to_time: float = nan)
Sets a constant pressure during a time period.

Default: 1.0e5 Pa.
Parameters

• pressure_in_pa – The pressure [Pa]

• from_time – The start time [s]

• to_time – The end time [s]

Returns
This ProcessSimulationCalculation object

with_options(options: ProcessMetallurgyOptions)
Sets the options for the process simulation.

Parameters
options – The options

Returns
This ProcessSimulationCalculation object

with_reaction_zone(reaction_zone: ReactionZone)
Sets the reaction zone of the process simulation. The bulk zones attached to this reaction zone are configured
in the reaction zone object.

Note: In the present release, only one reaction zone is supported.
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Parameters
reaction_zone – The reaction zone object

Returns
This ProcessSimulationCalculation object

class tc_python.process_metallurgy.process.ProcessSimulationResult(result)
Bases: AbstractResult

The result of a Process Metallurgy process simulation.

get_activity_of_slag(zone: Union[Zone, str], component: str, reference: ActivityReference =
ActivityReference.LIQUID)→ List[float]

Returns the activity of a component in the slag in a zone at each time point.

Parameters
• zone – The zone object or the zone name

• component – The component

• reference – The reference for the activity, can be liquid or solid slag, default: liquid
slag

Returns
The activity of the component at each time point [-]

get_amount(zone: Union[Zone, str])→ List[float]
Returns the amount of a zone at each time point.

Parameters
zone – The zone object or the zone name

Returns
The amount at each time point [kg]

get_amount_of_elements()→ Dict[str, List[float]]
Returns the total amount of each element in the simulation at each time point.

Returns
The total amount of the elements at each time point [kg]

get_amount_of_phase_groups(zone: Union[Zone, str])→ Dict[PhaseGroup, List[float]]
Returns the amount of each phase group (e.g., for example all liquid slag) in a zone at each time point.

Parameters
zone – The zone object or the zone name

Returns
The amount of the phase groups at each time point [kg]

get_amount_of_phases(zone: Union[Zone, str])→ Dict[str, List[float]]
Returns the amount of each phase in a zone at each time point.

Parameters
zone – The zone object or the zone name

Returns
The amount of the phases at each time point [kg]
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get_components()→ Set[str]
Returns all components defined in the simulation.

Returns
The components

get_composition(zone: Union[Zone, str], composition_unit: CompositionUnit =
CompositionUnit.MASS_PERCENT)→ Dict[str, List[float]]

Returns the composition of a zone per element at each time point.

Parameters
• zone – The zone object or the zone name

• composition_unit – The composition unit, default: mass percent
Returns

The composition at each time point

get_composition_of_phase(zone: Union[Zone, str], phase: str, composition_unit: CompositionUnit =
CompositionUnit.MASS_PERCENT, composition_type: CompositionType =
CompositionType.COMPONENT)→ Dict[str, List[float]]

Returns the composition of a phase in a zone at each time point.

Parameters
• zone – The zone object or the zone name

• phase – The phase name

• composition_unit – The composition unit, default: mass percent
• composition_type – Defines if the composition is given by element (e.g., 75 wt-% Fe -

25 wt-% Cr) or by component (e.g. 65 wt-% Al2O3 - 35 wt-% CaO). In case of a metallic
phase, the composition is given by element even if component is selected. Default: by
component.

Returns
The composition at each time point

get_composition_of_phase_group(zone: Union[Zone, str], phase_group: PhaseGroup,
composition_unit: CompositionUnit =
CompositionUnit.MASS_PERCENT, composition_type:
CompositionType = CompositionType.COMPONENT)→ Dict[str,
List[float]]

Returns the composition of a phase group (e.g., all liquid slag) in a zone at each time point.

Parameters
• zone – The zone object or the zone name

• phase_group – The phase group

• composition_unit – The composition unit, default: mass percent
• composition_type – Defines if the composition is given by element (e.g., 75 wt-% Fe -

25 wt-% Cr) or by component (e.g. 65 wt-% Al2O3 - 35 wt-% CaO). In case of a metallic
phase, the composition is given by element even if component is selected. Default: by
component.

Returns
The composition at each time point
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get_elements()→ Set[str]
Returns all elements present in the simulation.

Returns
The elements

get_enthalpy()→ List[float]
Returns the total enthalpy of the process at each time point.

Returns
The enthalpy at each time point [J]

get_exhaust_gas()→ ExhaustGasResult
Returns the result for the exhaust gas zone.

This result object can be used to evaluate the exhaust gas zone at each time point.

Returns
The exhaust gas zone result object.

get_formula_for_activity_of_slag(zone: Union[Zone, str], component: str, reference:
ActivityReference = ActivityReference.LIQUID)→ List[str]

Returns the Thermo-Calc Console syntax formula used for calculating the activity of a component in the
slag (e.g. AC(AL2O3, IONIC_LIQ) in a zone at each time point. The actual activity can be obtained using
get_activity_of_slag().

Parameters
• zone – The zone object or the zone name

• component – The component

• reference – The reference for the activity, can be liquid or solid slag, default: liquid
slag

Returns
The formula for calculating the activity at each time point

get_formula_for_slag_property(zone: Union[Zone, str], slag_property: SlagProperty, slag_type:
SlagType = SlagType.ALL)→ List[str]

Returns the Thermo-Calc Console syntax formula used for calculating a property of the slag (e.g.
B(CAO)/B(SIO2) in a zone at each time point. The actual slag property can be obtained using
get_slag_property().

Parameters
• zone – The zone object or the zone name

• slag_property – The slag property

• slag_type – The part of the slag for which the property will be calculated. Can be all
slag, the liquid or the solid slag. Default: all slag

Returns
The formula for calculating the slag property at each time point

get_fraction_of_phase_groups(zone: Union[Zone, str], unit: PhaseUnit =
PhaseUnit.MASS_FRACTION)→ Dict[PhaseGroup, List[float]]

Returns the fractions of the phase groups (e.g., all liquid slag) in a zone at each time point.

Parameters
• zone – The zone object or the zone name
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• unit – The unit of the fraction

Returns
The phase fractions at each time point

get_fraction_of_phases(zone: Union[Zone, str], unit: PhaseUnit = PhaseUnit.MASS_FRACTION)→
Dict[str, List[float]]

Returns the fractions of all stable phases in a zone at each time point.

Parameters
• zone – The zone object or the zone name

• unit – The unit of the fraction

Returns
The phase fractions at each time point

get_gas_components()→ Set[str]
Returns all components of the gas phase defined for the elements present in the simulation.

Returns
The components of the gas phase

get_num_of_performed_steps()→ List[int]
Returns the accumulated number of performed time steps at each time point.

Note: The number of performed time steps can differ from the index of the time step in the result list
because time steps might have been repeated with smaller step size during a process simulation.

Returns
The accumulated number of performed time steps

get_oxygen_partial_pressure(zone: Union[Zone, str])→ List[float]
Returns the partial pressure of oxygen in the zone at each time point.

Parameters
zone – The zone object or the zone name

Returns
The partial pressure [Pa]

get_pressure(zone: Union[Zone, str])→ List[float]
Returns the pressure in a zone at each time point.

Parameters
zone – The zone object or the zone name

Returns
The pressure at each time point [Pa]

get_slag_property(zone: Union[Zone, str], slag_property: SlagProperty, slag_type: SlagType =
SlagType.ALL)→ List[float]

Returns a property of the slag in a zone at each time point. These properties are mostly used to describe
the property of a slag to pick up sulfur.

Parameters
• zone – The zone object or the zone name
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• slag_property – The slag property

• slag_type – The part of the slag for which the property will be calculated. Can be all
slag, the liquid or the solid slag. Default: all slag

Returns
The slag property at each time point [unit depending on the property]

get_stable_phases(zone: Union[Zone, str])→ Set[str]
Returns the stable phases in a zone.

Parameters
zone – The zone object or the zone name

Returns
The stable phases

get_stable_phases_in_phase_group(zone: Union[Zone, str], phase_group: PhaseGroup)→ Set[str]
Returns the stable phases of a phase group (e.g., all solid slag) in a zone.

Parameters
• zone – The zone object or the zone name

• phase_group – The phase group

Returns
The stable phases of the phase group

get_temperature(zone: Union[Zone, str])→ List[float]
Returns the temperature of a zone at each time point.

Parameters
zone – The zone object or the zone name

Returns
The temperature at each time point [K]

get_time_points()→ List[float]
Returns the time points of the process simulation. All result quantities are returned for exactly these time
points.

Returns
The time points [s]

get_value_of(zone: Union[Zone, str], classic_expression: str)→ List[float]
Returns a value for a thermodynamic quantity in a zone at each time point.

Warning: It should normally not be required to use this method, use the appropriate method available
in the API instead.

Parameters
• zone – The zone object or the zone name

• classic_expression – The thermodynamic quantity to get the value of in Thermo-Calc
Console Mode syntax (for example “NPM(FCC_A1)”)

Returns
The requested value at each time point
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get_viscosity_dynamic_of_phase(zone: Union[Zone, str], phase: str)→ List[float]
Returns the dynamic viscosity of a phase in a zone at each time point.

Parameters
• zone – The zone object or the zone name

• phase – The phase name

Returns
The dynamic viscosity at each time point [Pa*s]

get_viscosity_kinematic_of_phase(zone: Union[Zone, str], phase: str)→ List[float]
Returns the kinematic viscosity of a phase in a zone at each time point.

Parameters
• zone – The zone object or the zone name

• phase – The phase name

Returns
The kinematic viscosity at each time point [m**2/s]

class tc_python.process_metallurgy.process.ReactionZone(area: float, left_zone: Zone,
mass_transfer_coefficient_left: Union[float,
MassTransferCoefficients], right_zone:
Zone, mass_transfer_coefficient_right:
Union[float, MassTransferCoefficients])

Bases: Zone

A reaction zone in a process simulation, this is representing the interface layer between two bulk zones that are
in contact and can react with each other, for example the steel melt and the top slag. The size of the reaction zone
is dynamic and determined by the mass transfer coefficient. A zone is a volume in a process that has identical
temperature and composition. It has well-defined boundaries to other zones.

add_addition(addition: AbstractSingleTimeAddition, time: float = 0.0)
Adds a single-time addition at the specified time point to the zone. The addition will be dissolved immedi-
ately.

Parameters
• addition – A SingleTimeAddition or SingleTimeGasAddition

• time – The time point [s]

Returns
This ReactionZone object

add_continuous_addition(addition: AbstractContinuousAddition, from_time: float = 0.0, to_time: float =
nan)

Adds a constant addition continuously during the specified time period to the zone. All added material will
be dissolved immediately.

Parameters
• addition – A ContinuousAddition or ContinuousGasAddition

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This ReactionZone object
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add_heat_transfer(heat_transfer_coefficient: float)
Adds heat transfer through the reaction zone, i.e., between the two attached bulk zones.

Parameters
heat_transfer_coefficient – The heat transfer coefficient [W/(K*m**2)]

Returns
This ReactionZone object

add_power(power: float, from_time: float = 0.0, to_time: float = nan)
Adds a constant power during a specified time period to the zone (for example heating or cooling).

Parameters
• power – The power [W]

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This ReactionZone object

add_transfer_of_phase_group(transfer_of_phase_group: TransferOfPhaseGroup)
Adds transfer of a certain phase group through the reaction zone during each time step, i.e. from one of the
attached bulk zones to the other. This is for example used to model inclusion flotation from the steel melt
to the slag.

Parameters
transfer_of_phase_group – The transfer of phase group configuration, can be time-
dependent.

Returns
This ReactionZone object

disable_degassing()

Disables degassing for this zone, i.e. all gas formed at any time step will be staying in this zone.

Returns
This ReactionZone object

enable_degassing()

Enables degassing for this zone, i.e. any gas formed at any time step will be removed after that time step.
This gas will be transferred into the exhaust gas zone. This is the default.

Returns
This ReactionZone object

get_elements()→ Set[str]
Returns the elements present in the zone. The elements are determined by the additions.

Returns
The elements

get_id()→ str
Returns the unique id of the zone. :return: The zone id

is_degassing_enabled()→ bool
Returns if degassing is enabled in the zone.

Returns
If degassing is enabled
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class tc_python.process_metallurgy.process.SingleTimeAddition(composition: Dict[str, float],
amount: float, temperature: float =
293.15, composition_unit:
CompositionUnit = Compositio-
nUnit.MASS_PERCENT, do_scale:
bool = False)

Bases: AbstractSingleTimeAddition

An addition in a process simulation that is added at a distinct time point.

It is assumed that the addition is dissolved instantaneously.

Tip: By setting do_scale=True, the composition will be scaled to 100% / fraction of 1. This is useful if the
composition provided is not summing to 100% / 1. An example could be a slag addition which is provided like
this: 90 wt-% CaO - 5 wt-% Al2O3 - 4 wt-% SiO2.

Parameters
• composition – The composition

• amount – The amount [kg]

• temperature – The initial addition temperature (default: 20 °C) [K]

• composition_unit – The composition unit

• do_scale – If the composition is scaled to 100% / fraction of 1

get_amount()→ float
Returns the amount of this addition.

Returns
The amount [kg]

get_composition_unit()→ CompositionUnit
Returns the composition unit used in this addition.

Returns
The composition unit

class tc_python.process_metallurgy.process.SingleTimeGasAddition(composition: Dict[str, float],
amount: float, temperature:
float = 293.15, amount_unit:
GasAmountUnit = GasAmoun-
tUnit.NORM_CUBIC_METER,
composition_unit:
GasCompositionUnit =
GasCompositio-
nUnit.VOLUME_PERCENT,
do_scale: bool = False)

Bases: AbstractSingleTimeAddition

A gas addition in a process simulation that is added at a distinct time point.

It is assumed that the addition is dissolved instantaneously.
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Tip: By setting do_scale=True, the composition will be scaled to 100% / fraction of 1. This is useful if the
composition provided is not scaling to 100% / 1. An example could be a gas addition which is provided like this:
90 vol–% Ar - 10 vol-% O2.

Parameters
• composition – The composition

• amount – The amount

• temperature – The initial addition temperature (default: 20 °C) [K]

• amount_unit – The amount unit

• composition_unit – The composition unit

• do_scale – If the composition is scaled to 100% / fraction of 1

get_amount()→ float
Returns the amount of this addition.

Note: The amount unit can be obtained using get_amount_unit().

Returns
The amount [in the amount unit]

get_amount_unit()→ GasAmountUnit
Returns the amount unit used in this addition.

Returns
The amount unit

get_composition_unit()→ GasCompositionUnit
Returns the composition unit used in this addition.

Returns
The composition unit

class tc_python.process_metallurgy.process.SlagBulkZone(density: float)
Bases: Zone

A slag bulk zone in a process simulation.

This is representing a large volume in the process, for example the top slag. A zone is a volume in a process that
has identical temperature and composition. It has well-defined boundaries to other zones.

The name of this zone is automatically defined and unique.

add_addition(addition: AbstractSingleTimeAddition, time: float = 0.0)
Adds a single-time addition at the specified time point to the zone. The addition will be dissolved immedi-
ately.

Parameters
• addition – A SingleTimeAddition or SingleTimeGasAddition

• time – The time point [s]
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Returns
This SlagBulkZone object

add_continuous_addition(addition: AbstractContinuousAddition, from_time: float = 0.0, to_time: float =
nan)

Adds a constant addition continuously during the specified time period to the zone. All added material will
be dissolved immediately.

Parameters
• addition – A ContinuousAddition or ContinuousGasAddition

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This SlagBulkZone object

add_power(power: float, from_time: float = 0.0, to_time: float = nan)
Adds a constant power during a specified time period to the zone (for example heating or cooling).

Parameters
• power – The power [W]

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This SlagBulkZone object

disable_degassing()

Disables degassing for this zone, i.e. all gas formed at any time step will be staying in this zone.

Returns
This SlagBulkZone object

enable_degassing()

Enables degassing for this zone, i.e. any gas formed at any time step will be removed after that time step.
This gas will be transferred into the exhaust gas zone. This is the default.

Returns
This SlagBulkZone object

get_density()→ float
Returns the density of the zone

Returns
The density [kg/m**3]

get_elements()→ Set[str]
Returns the elements present in the zone. The elements are determined by the additions.

Returns
The elements

get_id()→ str
Returns the unique id of the zone. :return: The zone id
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get_phase_group_to_transfer()→ PhaseGroup
Returns the phase group that is transferred from the attached reaction zones back to this zone after each
time step.

Returns
The phase group

is_degassing_enabled()→ bool
Returns if degassing is enabled in the zone.

Returns
If degassing is enabled

class tc_python.process_metallurgy.process.TransferOfPhaseGroup(phase_group_to_transfer:
PhaseGroup, source_zone:
Zone)

Bases: object

The transfer of a percentage of a certain phase group (.e.g., solid slag) between zones during each time step. This
is for example used to model inclusion flotation from the steel melt to the slag.

add(transfer_rate: float, time: float = 0)
Adds the transfer rate valid beginning at a time point.

This value is valid until another value is defined for a later time point.

Parameters
• transfer_rate – The transfer rate [% of phase group amount/s]

• time – The time point where the transfer of a phase group begins to be valid [s]

Returns
This TransferOfPhaseGroup object

get_phase_group_to_transfer()→ PhaseGroup
Returns the phase group to be transferred

Returns
The phase group

get_transfer_source_zone_id()→ str
The id of the source zone of the transfer

Returns
This source zone id

class tc_python.process_metallurgy.process.Zone

Bases: object

The base class of a zone in a process simulation. A zone is a volume in a process that has identical temperature
and composition. It has well-defined boundaries to other zones.

add_addition(addition: AbstractSingleTimeAddition, time: float = 0.0)
Adds a single-time addition at the specified time point to the zone. The addition will be dissolved immedi-
ately.

Parameters
• addition – A SingleTimeAddition or SingleTimeGasAddition

• time – The time point [s]
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Returns
This Zone object

add_continuous_addition(addition: AbstractContinuousAddition, from_time: float = 0.0, to_time: float =
nan)

Adds a constant addition continuously during the specified time period to the zone. All added material will
be dissolved immediately.

Parameters
• addition – A ContinuousAddition or ContinuousGasAddition

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This Zone object

add_power(power: float, from_time: float = 0.0, to_time: float = nan)
Adds a constant power during a specified time period to the zone (for example heating or cooling).

Parameters
• power – The power [W]

• from_time – The start time point [s]

• to_time – The end time point [s]

Returns
This Zone object

disable_degassing()

Disables degassing for this zone, i.e. all gas formed at any time step will be staying in this zone.

Returns
This Zone object

enable_degassing()

Enables degassing for this zone, i.e. any gas formed at any time step will be removed after that time step.
This gas will be transferred into the exhaust gas zone. This is the default.

Returns
This Zone object

get_elements()→ Set[str]
Returns the elements present in the zone. The elements are determined by the additions.

Returns
The elements

get_id()→ str
Returns the unique id of the zone. :return: The zone id

is_degassing_enabled()→ bool
Returns if degassing is enabled in the zone.

Returns
If degassing is enabled

6.1. Calculations 249



TC-Python Documentation, Release 2025b

6.1.10 Module “additive_manufacturing”

class tc_python.am.AdditiveManufacturingCalculation(calculation)
Bases: object

Abstract base class for an Additive Manufacturing calculation.

disable_fluid_flow_marangoni()

Disables the fluid flow modelling of the Marangoni effect.

Default: Enabled

Returns
This AdditiveManufacturingCalculation object

disable_separate_materials()

Disables separate material properties for powder and solid material.

Default: Disabled

Returns
This AdditiveManufacturingCalculation object

enable_fluid_flow_marangoni()

Enables the fluid flow modelling of the Marangoni effect.

Default: Enabled

Note: This option is not possible to use in conjunction with the option separate material, which is therefore
automatically disabled.

Returns
This AdditiveManufacturingCalculation object

enable_separate_materials()

Enables separate material properties for powder and solid material.

Default: Disabled

Note: This option is not possible to use in conjunction with the option Marangoni fluid flow, which is
therefore automatically disabled.

Returns
This AdditiveManufacturingCalculation object

get_configuration_as_string()→ str
Returns detailed information about the current state of the calculation object.

Warning: The structure of the calculation objects is an implementation detail and might change be-
tween releases without notice. Therefore do not rely on the internal object structure.
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invalidate()

Invalidates the object and frees the disk space used by it. This is only required if the disk space occupied by
the object needs to be released during the calculation. No data can be retrieved from the object afterward.

set_ambient_temperature(temperature: float = 296.15)
Sets the ambient temperature.

Default: 23 degree Celsius

Parameters
temperature – The ambient temperature [K]

Returns
This AdditiveManufacturingCalculation object

set_base_plate_temperature(temperature: float = 303.15)
Sets the baseplate temperature.

Default: 30 degree Celsius

Parameters
temperature – The baseplate temperature [K]

Returns
This AdditiveManufacturingCalculation object

set_gas_pressure(pressure: float = 100000.0)
Sets the gas pressure.

Default: 1.0e5 Pa

Parameters
pressure – The pressure [Pa]

Returns
This AdditiveManufacturingCalculation object

set_height(height: float = 0.002)
Sets the height of the simulation domain.

Default: 2.0e-3 m

Parameters
height – The height [m]

Returns
This AdditiveManufacturingCalculation object

set_layer_thickness(layer_thickness: float = 4e-05)
Sets the layer thickness.

Default: 40.0e-6 m

Parameters
layer_thickness – The layer thickness [m]

Returns
This AdditiveManufacturingCalculation object

set_powder_density(powder_density: float = 80.0)
Sets the powder density.

Default: 80.0%
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Parameters
powder_density – The powder density [%]

Returns
This AdditiveManufacturingCalculation object

with_heat_source(heat_source: HeatSource)
Sets the heat source.

Parameters
heat_source – The heat source

Returns
This AdditiveManufacturingCalculation object

with_material_properties(material_properties: MaterialProperties)
Sets the material properties.

Tip: Material properties can be defined like this: MaterialProperties.from_library("IN718") or
MaterialProperties.from_scheil_result(scheil_result).

Parameters
material_properties – The material properties

Returns
This AdditiveManufacturingCalculation object

with_mesh(mesh: Mesh)
Sets the mesh.

Parameters
mesh – The mesh

Returns
This AdditiveManufacturingCalculation object

with_numerical_options(numerical_options: NumericalOptions)
Sets the numerical options.

Parameters
numerical_options – The numerical options

Returns
This AdditiveManufacturingCalculation object

with_top_boundary_conditions(boundary_conditions: TopBoundaryConditions)
Sets the boundary conditions.

Parameters
boundary_conditions – The boundary conditions

Returns
This AdditiveManufacturingCalculation object

class tc_python.am.AdditiveManufacturingResult(result)
Bases: AbstractResult

Base class for additive manufacturing results.
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get_absorptivity_mesh()

Returns a mesh object containing the absorptivity data from this result. Returns NONE for this method if
the result has no absorptivity data.

get_data_over_line(name: str, point1: List[float], point2: List[float], n: int)→ Tuple[List[float],
List[float]]

Obtains the data of property name over a line from point1 to point2 :param name: The name of property to
obtain the data from :param point1: The first point of the line :param point2: The second point of the line
:param n: The number of points to obtain :return: A tuple (distance to point 1 [m], data value)

get_effective_absorption()→ float
:return Effective absorption under the heat source due to multiple reflections of laser rays

get_pyvista_mesh(scalar: Scalar = Scalar.TEMPERATURE, material_type: MaterialType =
MaterialType.SHOW_ALL)

Returns a pyvista mesh object that can be added to a pyvista plotter.

More details about pyvista meshes can be found in their documentation: https://docs.pyvista.org/version/
stable/api/plotting/_autosummary/pyvista.Plotter.add_mesh.html

Tip: This method is typically used to obtain additional meshes with other settings if the plot object has
already been retrieved with get_pyvista_plotter().

Parameters
• scalar – The quantity to be visualized in the plot

• material_type – The material type to be visualized in the plot

Returns
A pyvista.DataSet object

get_pyvista_plotter(scalar: Scalar = Scalar.TEMPERATURE, material_type: MaterialType =
MaterialType.SHOW_ALL, camera: Optional[Dict[str, List[float]]] = None,
anti_aliasing: str = 'msaa', multi_samples: int = 16, color_map: str = 'jet',
enable_camera_orientation_widget: bool = False, render_lines_as_tubes: bool =
True, background: str = 'LightSteelBlue', shape: Optional[bool] = None,
view_buttons: bool = True, update_plot_callback: Optional[Callable] = None)

Returns a pyvista plotter and a mesh object containing the data from this result. They can be used to create
3D-plots visualizing the results of the AM calculation. More details about the pyvista settings can be found
in their documentation: https://docs.pyvista.org/version/stable/api/plotting/_autosummary/pyvista.Plotter.
html

The most simple usage of this method is:

plotter, mesh = result.get_pyvista_plotter()
plotter.add_mesh(mesh)
plotter.show()

Parameters
• scalar – The quantity to be visualized in the plot

• material_type – The material type to be visualized in the plot, only available if
AdditiveManufacturingCalculation.enable_separate_materials() has been
used
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• camera – Defining the camera position, view-up vector and focus point, the default is
DEFAULT_CAMERA, for example: {‘position’: [-2, -2, 1], ‘viewup’: [0, 0, 1], ‘focal_point’:
[0.0, 0.0, 0.0]}. More details can be found here: https://docs.pyvista.org/version/stable/
api/core/camera.html

• anti_aliasing – The pyvista antialiasing setting, can be one of: “msaa” - Multi-
Sample Anti-Aliasing, “fxaa” - Fast Approximate Anti-Aliasing or “ssaa” - Super-Sample
Anti-Aliasing. More details can be found here: https://docs.pyvista.org/version/stable/
examples/02-plot/anti-aliasing.html

• multi_samples – The number of samples used for antialiasing

• color_map – The pyvista colormap. Can be any colormap provided by Matplotlib and
some other plotting libraries. More details can be found here: https://docs.pyvista.org/
version/stable/examples/02-plot/cmap.html

• enable_camera_orientation_widget – Enables the pyvista camera orientation widget
in the plotter

• render_lines_as_tubes – Controls if lines are rendered as tubes

• background – The pyvista background color, either a string, rgb list or hex color
string. https://docs.pyvista.org/version/stable/api/plotting/_autosummary/pyvista.Plotter.
background_color.html

• shape – The shape of the plot, i.e. how many subplots will be created - a tuple (y, x), for
example (2, 2). They are accessed using pyvista.Plotter.subplot.

• view_buttons – If buttons for quick navigation between camera and x-, y-, or z-direction
view should be added to the plot

• update_plot_callback – A plot update function that will be called every time the slider
with simulation time is dragged in the plot windows, this can be used to dynamically ap-
ply changes to the plot, required syntax: def update_plot(plotter: pv.Plotter,
mesh: pv.DataSet)

Returns
Tuple containing the pyvista.Plotter and the pyvista.DataSet mesh object

get_result_file_path()→ str
Returns the path to the main result file (for example a ParaView *.pvd file) on disk containing the complete
result data set. Its directory contains also further result data that can be useful.

Tip: The Python API of ParaView can be used to extract any kind of data from the result in a programmatic
way. See here for more details: https://kitware.github.io/paraview-docs/latest/python/

Returns
The path to the main result file

get_thermal_gradient_and_melting_rate()→ List[List[float]]
Evaluate the thermal gradient and melting rate at the liquidus isotherm :return [[Thermal gradient], [melting
rate], [x], [y], [z]]

get_thermal_gradient_and_solidification_rate()→ List[List[float]]
Evaluate the thermal gradient and solidification rate at the liquidus isotherm :return [[Thermal gradient],
[solidification rate], [x], [y], [z]]
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has_absorption_distribution_on_keyhole()→ bool
:return True if there is effective absorption on the keyhole

class tc_python.am.Automatic

Bases: FileSavingStrategy

An automatic saving strategy.

get_type()→ str
Returns the type of the file saving strategy.

Returns
The type

set_max_number_of_files_stored(max_number: int = 1000000)
Sets the maximum number of files that are stored.

Default: unlimited
Parameters
max_number – The maximum number of files that is stored

Returns
This FileSavingStrategy object

set_saving_interval_strategy(saving_interval_strategy=AutomaticSavingIntervalStrategy.LINEAR)
Sets the saving interval strategy.

Default: A linear saving interval strategy.
Parameters
saving_interval_strategy – The saving interval strategy

Returns
This FileSavingStrategy object

store_unlimited_number_of_files()

Sets the maximum number of files that are stored to unlimited.

Returns
This FileSavingStrategy object

class tc_python.am.AutomaticSavingIntervalStrategy(value)
Bases: Enum

The strategy for choosing the time interval for saving files in automatic mode.

EXPONENTIALLY_INCREASING = 2

An exponentially increasing time interval

LINEAR = 1

A linear time interval

class tc_python.am.BiDirectionalScanningStrategy

Bases: ScanningStrategy

A bidirectional scanning strategy (flipping scanning direction of the heat source between alternate tracks).

get_type()→ str
Returns the type of scanning strategy.

Returns
The type
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set_angle(angle: float = 0.0)
Sets the rotation of the scanning direction between two consecutive layers.

Note: The scanning direction of the first layer is always aligned parallel to the x-axis.

Default: 0 degree

Parameters
angle – The angle [degree]

Returns
This BiDirectionalScanningStrategy object

set_hatch_spacing(hatch_spacing: float = 0.0)
Sets the horizontal separation between two consecutive tracks.

Default: 0 m

Parameters
hatch_spacing – The hatch spacing [m]

Returns
This BiDirectionalScanningStrategy object

set_lift_time(lift_time: float = 0.0)
Sets the lift time, i.e. the time between two tracks where the heat source is inactive.

Default: 0 s

Parameters
lift_time – The lift time [s]

Returns
This BiDirectionalScanningStrategy object

set_margin(margin: float = 0.001)
Sets the margin.

This is the offset of the scanning path from the sides of the computational domain.

Default: 1.0e-3 [m]

Parameters
margin – The margin [m]

Returns
This BiDirectionalScanningStrategy object

set_number_of_layers(number_of_layers: int = 1)
Sets the number of layers.

Default: 1

Parameters
number_of_layers – The number of layers

Returns
This BiDirectionalScanningStrategy object
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set_powder_fill_time(powder_fill_time: float = 0.0)
Sets the powder fill time.

Default: 0 s

Parameters
powder_fill_time – The powder fill time [s]

Returns
This BiDirectionalScanningStrategy object

class tc_python.am.CalculatedCoreRingHeatSource(absorptivity_factor: float = 1.0, wave_length: float =
1064.0)

Bases: object

A CoreRing heat source (with calculated absorptivity)

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This CalculatedCoreRingHeatSource object

static get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity_pre_factor(pre_factor: float = 1)

Parameters
pre_factor – The absorptivity prefactor value to set, default is 1.

Returns
This CalculatedCoreRingHeatSource object

set_beam_radius_core(beam_radius_core: float = 5e-05)
Sets the beam radius-Core.

Default: 50.0e-6 m

Parameters
beam_radius_core – The beam radius of the core beam [m]

Returns
This CoreRingHeatSource object

set_beam_radius_ring(beam_radius_ring: float = 3.3e-05)
Sets the beam radius-Ring.

Default: 33.0e-6 m

Note: set_beam_radius_ring() cannot be used with set_core_ring_index().

Parameters
beam_radius_ring – The beam radius of the ring beam [m]

Returns
This CoreRingHeatSource object
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set_core_ring_index(core_ring_index: CoreRingIndex = CoreRingIndex.INDEX_0)
Sets the Core-Ring Index. Beam radius-Ring, Ring radius and Percentage of power in ring are then set to
a value based on the selected Index and Beam radius-Core.

Default: CoreRingIndex.INDEX_0

Note: set_core_ring_index() cannot be used with set_beam_radius_ring(),
set_ring_radius() or set_ring_power_percent().

Parameters
core_ring_index – The index (INDEX_0 - INDEX_6) of the Core-Ring laser system

Returns
This CoreRingHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CalculatedCoreRingHeatSource object

set_ring_power_percent(ring_power_percent: float = 7.0)
Sets the percentage of the power of the heat source in the ring beam

Default: 7.0 %

Note: set_ring_power_percent() cannot be used with set_core_ring_index().

Parameters
ring_power_percent – The percentage of power in the ring bean [%]

Returns
This CoreRingHeatSource object

set_ring_radius(ring_radius: float = 9.858e-05)
Sets the ring radius.

Default: 98.58e-6 m

Note: set_ring_radius() cannot be used with set_core_ring_index().

Parameters
ring_radius – The radius of the ring beam [m]

Returns
This CoreRingHeatSource object
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set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This CalculatedCoreRingHeatSource object

set_wave_length(wave_length: float = 1064)

Parameters
wave_length – The wavelength to be set for the heat source, defaults to 1064 nm.

Returns
This CalculatedCoreRingHeatSource objectT

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This CalculatedCoreRingHeatSource object

class tc_python.am.CalculatedGaussianHeatSource(absorptivity_factor: float = 1.0, wave_length: float =
1064.0)

Bases: object

A Gaussian heat source (with calculated absorptivity)

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This GaussianHeatSource object

static get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity_pre_factor(pre_factor: float = 1)

Parameters
pre_factor – The absorptivity prefactor value to set, default is 1.

Returns
This GaussianHeatSource object

set_beam_radius(beam_radius: float = 0.00011)
Sets the beam radius.

Default: 110.0e-6 m

Parameters
beam_radius – The beam radius [m]
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Returns
This GaussianHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This GaussianHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This GaussianHeatSource object

set_wave_length(wave_length: float = 1064)

Parameters
wave_length – The wavelength to be set for the heat source, defaults to 1064 nm.

Returns
This GaussianHeatSource objectT

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This GaussianHeatSource object

class tc_python.am.CalculatedTophatHeatSource(absorptivity_factor: float = 1.0, wave_length: float =
1064.0)

Bases: object

A Tophat heat source (with calculated absorptivity)

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This CalculatedTophatHeatSource object

static get_type()→ str
Returns the type of heat source.

Returns
The type
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set_absorptivity_pre_factor(pre_factor: float = 1)

Parameters
pre_factor – The absorptivity prefactor value to set, default is 1.

Returns
This CalculatedTophatHeatSource object

set_beam_radius(beam_radius: float = 0.00011)
Sets the beam radius.

Default: 110.0e-6 m

Parameters
beam_radius – The beam radius [m]

Returns
This CalculatedTophatHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CalculatedTophatHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This CalculatedTophatHeatSource object

set_wave_length(wave_length: float = 1064)

Parameters
wave_length – The wavelength to be set for the heat source, defaults to 1064 nm.

Returns
This CalculatedTophatHeatSource objectT

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This CalculatedTophatHeatSource object

class tc_python.am.CalibratedConicalHeatSource(java_calibrated_heat_source)
Bases: object

A calibrated conical heat source.
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get_absorptivity()→ float
Returns the absorptivity of the heat source.

Returns
The absorptivity [%]

get_hi()→ float
Returns the Hi dimension of the heat source.

Returns
The Hi dimension [micrometer]

get_re()→ float
Returns the Re dimension of the heat source.

Returns
The Re dimension [micrometer]

get_ri()→ float
Returns the Ri dimension of the heat source.

Returns
The Ri dimension [micrometer]

get_type()→ HeatSourceType
Returns the type of heat source.

Returns
The type

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CalibratedConicalHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This CalibratedConicalHeatSource object

class tc_python.am.CalibratedDoubleEllipsoidalHeatSource(java_calibrated_heat_source)
Bases: object

A calibrated double-ellipsoidal heat source.

get_absorptivity()→ float
Returns the absorptivity of the heat source.

Returns
The absorptivity [%]
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get_af()→ float
Returns the Af dimension of the heat source.

Returns
The Af dimension [micrometer]

get_ar()→ float
Returns the Ar dimension of the heat source.

Returns
The Ar dimension [micrometer]

get_b()→ float
Returns the B dimension of the heat source.

Returns
The B dimension [micrometer]

get_c()→ float
Returns the C dimension of the heat source.

Returns
The C dimension [micrometer]

get_type()→ HeatSourceType
Returns the type of heat source.

Returns
The type

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CalibratedConicalHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This CalibratedDoubleEllipsoidalHeatSource object

class tc_python.am.CalibratedGaussianHeatSource(java_calibrated_heat_source)
Bases: object

A calibrated Gaussian heat source.

get_absorptivity()→ float
Returns the absorptivity of the heat source.

Returns
The absorptivity [%]
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get_absorptivity_prefactor()→ float
Returns the absorptivity prefactor value of the calibrated heat source.

Returns
The absorptivity [%]

get_beam_radius()→ float
Returns the beam radius of the heat source.

Returns
The beam radius [micrometer]

get_type()→ HeatSourceType
Returns the type of heat source.

Returns
The type

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CalibratedGaussianHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This CalibratedGaussianHeatSource object

class tc_python.am.CalibratedHeatSource

Bases: HeatSource

A calibrated heat source.

abstract set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CalibratedHeatSource object

abstract set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]
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Returns
This CalibratedHeatSource object

class tc_python.am.CoarseMesh

Bases: Mesh

An initially coarse mesh.

Note: It is adaptive and will be automatically refined as required.

class tc_python.am.ConicalHeatSource

Bases: object

A conical heat source.

get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity(absorptivity: float = 60.0)
Sets the absorptivity.

Default: 60%

Parameters
absorptivity – The absorptivity [%]

Returns
This ConicalHeatSource object

set_hi(hi_dim: float = 0.0001)
Sets the parameter Hi that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 100.0e-6 m

Parameters
hi_dim – The Hi parameter [m]

Returns
This ConicalHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This ConicalHeatSource object
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set_re(re_dim: float = 0.0001)
Sets the parameter Re that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 100.0e-6 m

Parameters
re_dim – The Re parameter [m]

Returns
This ConicalHeatSource object

set_ri(ri_dim: float = 6e-05)
Sets the parameter Ri that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 60.0e-6 m

Parameters
ri_dim – The Ri parameter [m]

Returns
This ConicalHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This ConicalHeatSource object

class tc_python.am.CoreRingHeatSource(absorptivity: float = 60.0)
Bases: object

A CoreRing heat source.

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This CoreRingHeatSource object

get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity(absorptivity: float = 60.0)
Sets the absorptivity as a constant.

Default: 60%
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Parameters
absorptivity – The absorptivity [%]

Returns
This CoreRingHeatSource object

set_beam_radius_core(beam_radius_core: float = 5e-05)
Sets the beam radius-Core.

Default: 50.0e-6 m

Parameters
beam_radius_core – The beam radius of the core beam [m]

Returns
This CoreRingHeatSource object

set_beam_radius_ring(beam_radius_ring: float = 3.3e-05)
Sets the beam radius-Ring.

Default: 33.0e-6 m

Note: set_beam_radius_ring() cannot be used with set_core_ring_index().

Parameters
beam_radius_ring – The beam radius of the ring beam [m]

Returns
This CoreRingHeatSource object

set_core_ring_index(core_ring_index: CoreRingIndex = CoreRingIndex.INDEX_0)
Sets the Core-Ring Index. Beam radius-Ring, Ring radius and Percentage of power in ring are then set to
a value based on the selected Index and Beam radius-Core.

Default: CoreRingIndex.INDEX_0

Note: set_core_ring_index() cannot be used with set_beam_radius_ring(),
set_ring_radius() or set_ring_power_percent().

Parameters
core_ring_index – The index (INDEX_0 - INDEX_6) of the Core-Ring laser system

Returns
This CoreRingHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This CoreRingHeatSource object
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set_ring_power_percent(ring_power_percent: float = 7.0)
Sets the percentage of the power of the heat source in the ring beam

Default: 7.0 %

Note: set_ring_power_percent() cannot be used with set_core_ring_index.

Parameters
ring_power_percent – The percentage of power in the ring bean [%]

Returns
This CoreRingHeatSource object

set_ring_radius(ring_radius: float = 9.858e-05)
Sets the ring radius.

Default: 98.58e-6 m

Note: set_ring_radius() cannot be used with set_core_ring_index().

Parameters
ring_radius – The radius of the ring beam [m]

Returns
This CoreRingHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This CoreRingHeatSource object

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This CoreRingHeatSource object

class tc_python.am.CoreRingIndex(value)
Bases: Enum

Index number of the Core-ring heat source. The selected Index sets a pre-defined value of Percentage of power
in ring. INDEX_0 = 7%, INDEX_1 = 25%, INDEX_2 = 35%, INDEX_3 = 50%, INDEX_4 = 70%, INDEX_5
= 80%, INDEX_6 = 90%
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INDEX_0 = 0

Percentage of power in ring = 7%

INDEX_1 = 1

Percentage of power in ring = 25%

INDEX_2 = 2

Percentage of power in ring = 35%

INDEX_3 = 3

Percentage of power in ring = 50%

INDEX_4 = 4

Percentage of power in ring = 70%

INDEX_5 = 5

Percentage of power in ring = 80%

INDEX_6 = 6

Percentage of power in ring = 90%

class tc_python.am.CustomMesh(minimum_element_size: float = 1e-05, maximum_element_size: float =
0.0001)

Bases: Mesh

An initial mesh with explicitly defined dimensions.

Note: It is adaptive and will be automatically refined as required.

Parameters
• minimum_element_size – The minimum element size [m]

• maximum_element_size – The maximum element size [m]

tc_python.am.DEFAULT_CAMERA = {'position': [-2, -2, 1], 'viewup': [0, 0, 1]}

The default pyvista camera view.

class tc_python.am.DoubleEllipsoidalHeatSource

Bases: object

A double ellipsoidal heat source.

get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity(absorptivity: float = 60.0)
Sets the absorptivity.

Default: 60%

Parameters
absorptivity – The absorptivity [%]

Returns
This DoubleEllipsoidalHeatSource object
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set_af(af: float = 7e-05)
Sets the parameter Af that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 70.0e-6 m

Parameters
af – The Af parameter [m]

Returns
This DoubleEllipsoidalHeatSource object

set_ar(ar: float = 70.0)
Sets the parameter Ar that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 70.0e-6 m

Parameters
ar – The Ar parameter [m]

Returns
This DoubleEllipsoidalHeatSource object

set_b(b: float = 8.5e-05)
Sets the parameter B that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 85.0e-6 m

Parameters
b – The B parameter [m]

Returns
This DoubleEllipsoidalHeatSource object

set_c(c: float = 0.0002)
Sets the parameter C that defines the dimensions of the heat source.

Tip: See Thermo-Calc Online Help for details about this heat source model.

Default: 200.0e-6 m

Parameters
c – The C parameter [m]

Returns
This DoubleEllipsoidalHeatSource object
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set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This DoubleEllipsoidalHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This DoubleEllipsoidalHeatSource object

class tc_python.am.EveryNthTimeStep

Bases: FileSavingStrategy

Saving at every n-th time step.

get_type()→ str
Returns the type of the file saving strategy.

Returns
The type

set_n(n: int = 1)
Sets at which n-th time step files are saved.

Default: 1
Parameters
n – The n-th time step where files are saved

Returns
This FileSavingStrategy object

class tc_python.am.EveryTimeInterval

Bases: FileSavingStrategy

Saving after regular time intervals.

get_type()→ str
Returns the type of the file saving strategy.

Returns
The type

set_time_interval(time_interval: float = 0.01)
Sets the time interval at which files are saved.

Default: 0.01 s
Parameters
time_interval – The time interval [s]
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Returns
This FileSavingStrategy object

class tc_python.am.FileSavingStrategy

Bases: object

The strategy for how result files are saved on disk. Both the number and time point of saving can be controlled.

classmethod automatic()

An automatic saving strategy. This is the default.
classmethod every_n_th_time_step()

Saving at every n-th time step.

classmethod every_time_interval()

Saving after regular time intervals.

class tc_python.am.FineMesh

Bases: Mesh

An initially fine mesh.

Note: It is adaptive and will be automatically refined as required.

class tc_python.am.GaussianHeatSource(absorptivity: float = 60.0)
Bases: object

A Gaussian heat source.

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This GaussianHeatSource object

get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity(absorptivity: float = 60.0)
Sets the absorptivity as a constant.

Default: 60%

Parameters
absorptivity – The absorptivity [%]

Returns
This GaussianHeatSource object

set_beam_radius(beam_radius: float = 0.00011)
Sets the beam radius.

Default: 110.0e-6 m

Parameters
beam_radius – The beam radius [m]
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Returns
This GaussianHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This GaussianHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This GaussianHeatSource object

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This GaussianHeatSource object

class tc_python.am.HeatSource

Bases: object

The heat source.

The heat source model has either a Gaussian, Core-ring, Tophat, double ellipsoidal or conical distribution.

Default: A Gaussian heat source.
classmethod conical()

A conical heat source.

The default is a Gaussian heat source.
Returns

A new ConicalHeatSource object

classmethod conical_from_library(heat_source_name: str, power: float = 120.0, beam_speed: float =
0.5)

Read a conical heat source given its name.

Tip: The available heat sources can be obtained using HeatSource.
get_available_calibrated_heat_source_names(). Their types are then available with the
method get_type() for each heat source.
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Parameters
• heat_source_name – The name of the conical heat source to read

• power – The beam power, default: 120 W [W]

• beam_speed – The beam speed, default: 500e-3 m/s [m/s]

Returns
A new CalibratedConicalHeatSource object

classmethod core_ring_with_calculated_absorptivity(absorptivity_factor: float = 1.0,
wave_length: float = 1064.0)

A core_ring heat source with calculated absorptivity.

Parameters
• absorptivity_factor – A factor that adjusts the absorptivity of the heat source. Default

is 1.0.

• wave_length – The wavelength is used for calculating absorptivity. Default is 1064.0 nm.

Returns
A new CalculatedCoreRingHeatSource object

classmethod core_ring_with_constant_absorptivity(absorptivity: float = 60.0)
A core_ring heat source with constant absorptivity.

Parameters
absorptivity – A constant value for absorptivity. Default is 60.0 %.

Returns
A new CoreRngHeatSource object

classmethod core_ring_with_user_defined_function_absorptivity(function: str = '60')

A core_ring heat source with user defined function for absorptivity.

Parameters
function – The user defined function string for absorptivity, which can be constant, or a
function of temperature (T), e.g. -1.6e-7*T*T+2.5e-3*T+31.

Returns
A new UserDefinedCoreRingHeatSource object

classmethod double_ellipsoidal()

A double ellipsoidal heat source.

The default is a Gaussian heat source.
Returns

A new DoubleEllipsoidalHeatSource object

classmethod double_ellipsoidal_from_library(heat_source_name: str, power: float = 120.0,
beam_speed: float = 0.5)

Read a double-ellipsoidal heat source given its name.

Tip: The available heat sources can be obtained using HeatSource.
get_available_calibrated_heat_source_names(). Their types are then available with the
method get_type() for each heat source.
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Parameters
• heat_source_name – The name of the double-ellipsoidal heat source to read

• power – The beam power, default: 120 W [W]

• beam_speed – The beam speed, default: 500e-3 m/s [m/s]

Returns
A new CalibratedDoubleEllipsoidalHeatSource object

classmethod from_library(heat_source_name: str, power: float = 120.0, beam_speed: float = 0.5)
Read a heat source given its name.

Tip: The available heat sources can be obtained using HeatSource.
get_available_calibrated_heat_source_names(). Their types are then available with the
method get_type() for each heat source.

Parameters
• heat_source_name – The name of the heat source to read

• power – The beam power, default: 120 W [W]

• beam_speed – The beam speed, default: 500e-3 m/s [m/s]

Returns
A new CalibratedHeatSource object

classmethod gaussian()

A Gaussian heat source.

Returns
A new GaussianHeatSource object

classmethod gaussian_from_library(heat_source_name: str, power: float = 120.0, beam_speed: float
= 0.5)

Read a Gaussian heat source given its name.

Tip: The available heat sources can be obtained using HeatSource.
get_available_calibrated_heat_source_names(). Their types are then available with the
method get_type() for each heat source.

Parameters
• heat_source_name – The name of the Gaussian heat source to read

• power – The beam power, default: 120 W [W]

• beam_speed – The beam speed, default: 500e-3 m/s [m/s]

Returns
A new CalibratedGaussianHeatSource object
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classmethod gaussian_with_calculated_absorptivity(absorptivity_factor: float = 1.0,
wave_length: float = 1064.0)

A gaussian heat source with calculated absorptivity.

Parameters
• absorptivity_factor – A factor that adjusts the absorptivity of the heat source. Default

is 1.0.

• wave_length – The wavelength is used for calculating absorptivity. Default is 1064.0 nm.

Returns
A new CalculatedGaussianHeatSource object

classmethod gaussian_with_constant_absorptivity(absorptivity: float = 60.0)
A gaussian heat source with constant absorptivity.

Parameters
absorptivity – A constant value for absorptivity. Default is 60.0 %.

Returns
A new GaussianHeatSource object

classmethod gaussian_with_user_defined_function_absorptivity(function: str = '60')

A gaussian heat source with user defined function for absorptivity.

Parameters
function – The user defined function string for absorptivity, which can be constant, or a
function of temperature (T), e.g. -1.6e-7*T*T+2.5e-3*T+31.

Returns
A new UserDefinedGaussianHeatSource object

classmethod get_available_calibrated_heat_source_names()→ List[str]
Retrieves a list of available heat source names.

Tip: The heat sources can then be read using HeatSource.from_library().

Returns
A list of strings representing the names of available heat sources

classmethod get_calibrated_heatsource_names()→ List[str]
Returns a list of the names of the available calibrated heat sources.

The name can then be used with the function get_path_of_calibrated_heatsource().

Returns
The list of names

classmethod get_path_of_calibrated_heatsource(optimized_heatsource_name: str)→ str
Returns the file path of the calibrated heat source.

Parameters
optimized_heatsource_name – The name of the calibrated heat source

Returns
The file path
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classmethod tophat_with_calculated_absorptivity(absorptivity_factor: float = 1.0, wave_length:
float = 1064.0)

A tophat heat source with calculated absorptivity.

Parameters
• absorptivity_factor – A factor that adjusts the absorptivity of the heat source. Default

is 1.0.

• wave_length – The wavelength is used for calculating absorptivity. Default is 1064.0 nm.

Returns
A new CalculatedCoreRingHeatSource object

classmethod tophat_with_constant_absorptivity(absorptivity: float = 60.0)
A tophat heat source with constant absorptivity.

Parameters
absorptivity – A constant value for absorptivity. Default is 60.0 %.

Returns
A new TophatHeatSource object

classmethod tophat_with_user_defined_function_absorptivity(function: str = '60')

A tophat heat source with user defined function for absorptivity.

Parameters
function – The user defined function string for absorptivity, which can be constant, or a
function of temperature (T), e.g. -1.6e-7*T*T+2.5e-3*T+31.

Returns
A new UserDefinedTophatHeatSource object

class tc_python.am.HeatSourceType(value)
Bases: Enum

An enumeration.

CONICAL = 2

DOUBLE_ELLIPSOIDAL = 1

GAUSSIAN = 0

class tc_python.am.KeyholeModel

Bases: object

A model for an “analytic” keyhole in the AM calculation.

set_beam_quality(beam_quality: float = 1.0)
Sets the Beam quality factor M2.

Default: 1.0

Parameters
beam_quality – The Beam quality factor M2 []

Returns
This KeyholeModel object
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set_rayleigh_length(rayleigh_length: float = 0.0025)
Sets the Rayleigh length.

Default: 2.5e-3 m

Parameters
rayleigh_length – The Rayleigh length [m]

Returns
This KeyholeModel object

class tc_python.am.LibraryMaterialProperties(library_name: str)
Bases: MaterialProperties

Material properties previously saved on disk using the specified library name.

class tc_python.am.MaterialProperties

Bases: object

The material properties used in the AM calculation, can be either from a Scheil calculation or from a previously
stored library.

delete_library()

Deletes the material library from disk.

classmethod from_library(library_name: str)
Uses material properties previously saved on disk using a library name.

Parameters
library_name – The library name

Returns
A new LibraryMaterialProperties object

classmethod from_scheil_result(result: ScheilCalculationResult, interface_scattering_constant: float
= 4e-08)

Creates material properties from the result of a Scheil calculation.

Parameters
• result – The Scheil result to create material properties from

• interface_scattering_constant – Greater than zero to use the interface scattering

Returns
A new ScheilMaterialProperties object

classmethod get_all_library_names()→ List[str]
Returns a list with the names of all material libraries available on disk.

Returns
A list with the names of all material libraries

get_average_material_property_in_range(material_property_enum: MaterialProperty, from_zone:
Zone, to_zone: Zone)→ float

Returns average values for the specified material property in the specified zone interval.

Parameters
• material_property_enum – The material property

• from_zone – The lower zone boundary
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• to_zone – The upper zone boundary

Returns
The average value for the specified material property in the specified zone interval

get_evaporation_temperature()→ float
Returns the evaporation temperature for the material.

Returns
The evaporation temperature [K]

get_liquidus_temperature()→ float
Returns the liquidus temperature for the material.

Returns
The liquidus temperature [K]

get_name()→ str
Returns the name of the library.

Returns
The name of the library

get_smoothed_values_for_material_property(material_property_enum: MaterialProperty)→
[List[float], List[float]]

Returns smoothed values for the specified material property.

Parameters
material_property_enum – The material property

Returns
The temperature [K] and the values of the specified material property

get_smoothing_for(material_property_enum: MaterialProperty)→ Smoothing
Returns the smoothing level for the specified material property.

Parameters
material_property_enum – The material property to get smoothing level for

Returns
The smoothing level for the specified material property

get_solidification_temperature()→ float
Returns the solidification temperature for the material.

Returns
The solidification temperature [K]

rename_as_library(name: str)
Renames the material library.

Parameters
name – The new name of the library

Returns
This MaterialProperties object

save_as_library(name: str = '')
Saves the material library with the specified name to disk.

Default: Re-save the current object with the previously chosen name
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Parameters
name – The new name of the library

Returns
This MaterialProperties object

save_library()

Saves the material library to disk.

Returns
This MaterialProperties object

set_smoothing_for_all_properties(smoothing_enum: Smoothing)
Sets the smoothing level for all material properties.

Parameters
smoothing_enum – The smoothing level

Returns
This MaterialProperties object

set_smoothing_for_property(material_property_enum: MaterialProperty, smoothing_enum:
Smoothing)

Sets the smoothing level for the specified material property.

Parameters
• material_property_enum – The specified material property

• smoothing_enum – The smoothing level

Returns
This MaterialProperties object

class tc_python.am.MaterialProperty(value)
Bases: Enum

A single material property used in the class MaterialProperties.

CP = 0

Apparent heat capacity [J/(kg K)]

DENSITY = 1

Density [kg/m3]

DRIVING_FORCE_EVAPORATION = 8

Driving force for evaporation [J/mol]

DYNAMIC_VISCOSITY = 4

Dynamic viscosity [Pa s]

ELECTRIC_RESISTIVITY = 11

Resistivity [Ohm * m]

ENTHALPY_PER_KG = 10

Enthalpy [J/kg]

ENTHALPY_PER_MOLE = 2

Enthalpy [J/mol]
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EVAPORATION_ENTHALPY = 9

Evaporation enthalpy [J/mol]

MOLAR_MASS_OF_GAS = 7

Molar mass of Gas [kg/mol]

MOLAR_VOLUME = 6

Molar volume [m3/mol]

SURFACE_TENSION = 5

Surface tension [J/m2]

THERMAL_CONDUCTIVITY = 3

Thermal conductivity [W/(m K)]

class tc_python.am.MaterialType(value)
Bases: Enum

The material (solid, liquid, powder) to be plotted in a pyvista visualization plot.

LIQUID = 'Liquid'

Onl liquid material

POWDER = 'Powder'

Only powder

SHOW_ALL = 'All'

All material

SOLID = 'Solid'

Only solid material

SOLID_AND_LIQUID = 'Solid and liquid'

Only solid and liquid material

SOLID_AND_POWDER = 'Solid and powder'

Only solid material and powder

class tc_python.am.MediumMesh

Bases: Mesh

An initially medium mesh.

Note: It is adaptive and will be automatically refined as required.

class tc_python.am.Mesh

Bases: object

The initial mesh size in the simulation.

Can be coarse, medium, fine, or custom.

Note: It is adaptive and will be automatically refined as required.
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classmethod coarse()

Selecting the mesh to be initially coarse.

Note: It is adaptive and will be automatically refined as required.

Returns
A new CoarseMesh object

classmethod custom(minimum_element_size: float = 1e-05, maximum_element_size: float = 0.0001)
Selecting explicitly the initial mesh.

Default: Minimum element size: 10 um, maximum element size: 100 um

Note: It is adaptive and will be automatically refined as required.

Parameters
• minimum_element_size – The minimum element size [m]

• maximum_element_size – The maximum element size [m]

Returns
A new CustomMesh object

classmethod fine()

Selecting the mesh to be initially fine.

Note: It is adaptive and will be automatically refined as required.

Returns
A new FineMesh object

classmethod medium()

Selecting the mesh to be initially medium.

Note: It is adaptive and will be automatically refined as required.

Returns
A new MediumMesh object

class tc_python.am.NumericalOptions

Bases: object

The numerical options for an AM simulation.

disable_damping()

Disable numerical damping.

Default: disabled
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Returns
This NumericalOptions object

disable_petrov_galerkin()

Disables Streamline upwind Petrov-Galerkin (SUPG) for the numerical solver.

Default: enabled
Returns

This NumericalOptions object

enable_petrov_galerkin()

Enables Streamline upwind Petrov-Galerkin (SUPG) for the numerical solver.

Default: enabled
Returns

This NumericalOptions object

get_options()

Returns the numerical options for an AM simulation.

Returns
The numerical options

set_damping_factor(damping_factor: float = 0.0)
Sets the numerical damping factor.

Default: numerical damping is disabled
Parameters
damping_factor – The numerical damping factor

Returns
This NumericalOptions object

set_number_of_cores(num_cores: int)
Sets the number of used processor cores.

Default: Half of the available cores on the CPU, 2 cores on a 2-core CPU, and 1 core on a 1-core CPU.
Parameters
num_cores – The number of used cores

Returns
This NumericalOptions object

set_smagorinsky_constant(const: float = 0.18)
Sets the smagorinsky constant.

Parameters
const – The smagorinsky constant.

Returns
This NumericalOptions object

with_file_saving_strategy(file_saving_strategy: FileSavingStrategy)
Sets the strategy how result files are saved on disk. Both the number and time point of saving can be
controlled.

Default: an automatic file saving strategy
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Parameters
file_saving_strategy – The file saving strategy

Returns
This NumericalOptions object

class tc_python.am.ProbeCoordinate(x: Optional[float] = None, y: Optional[float] = None, z:
Optional[float] = None, position: Optional[List[float]] = None)

Bases: object

The coordinates of a probe. This is a point in the simulation domain whose properties can be obtained from the
result object after the calculation using TransientResult.get_temperatures_at_probe().

class tc_python.am.Scalar(value)
Bases: Enum

A quantity to be plotted in a pyvista visualization plot.

MATERIAL_TYPE = 'subdomain_id'

Material type

MOLAR_VOLUME = 'molar_volume'

Molar volume

SURFACE_TENSION = 'gamma'

Surface tension

TEMPERATURE = 'temperature'

Temperature

THERMAL_CONDUCTIVITY = 'k'

Thermal conductivity

VOLUME_FRACTION_LIQUID = 'liquid_vfrac'

Volume fraction of liquid

class tc_python.am.ScanningPath(calc: AdditiveManufacturingCalculation)
Bases: object

get_end_of_scanning_time()→ float

Returns
The end of scanning time (s)

get_heat_source_position(time: float)→ Tuple[List[float], float]

Parameters
time – The time (s)

Returns
position of the heat source, and its angle. Returns an empty position list, if the heat source is
OFF

get_heat_source_position_nearby(layerID: int, x: float, y: float)→ Tuple[List[float], float, float, float]

Parameters
• layerID – The layer ID. Zero index

• x – x-coordinate of the point.

• y – y-coordinate of the point.
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Returns
position of the nearest point, factor of this position on the line, distance to the line, and time.

get_heat_source_position_on_path(pathID: int, layerID: int, factor: float)→ Tuple[List[float], float,
float]

Parameters
• pathID – The path ID of the scanning path. Zero index

• layerID – The layer ID of the scanning path. Zero index

• factor – The factor. 0 - for the beginning position, and 1- for the end position of the line
path.

Returns
position of the heat source, its angle, and time.

get_number_of_layers()→ int

Returns
Total number of layers

get_position_between_two_nearest_lines(layerID: int, x: float, y: float)→ Tuple[float]

Parameters
• layerID – The layer ID. Zero index

• x – x-coordinate of the point.

• y – y-coordinate of the point.

Returns
The nearest position in the middle of two scanning paths. The scanning paths are determined
by the two closet to [x, y]

get_scanning_path_of_layer(layer: int)→ List[List[float]]

Returns
List of scanning paths on a layer

get_time_on_path(pathID: int, layerID: int)→ Tuple[float, float]

Parameters
• pathID – The path ID of the scanning path. Zero index

• layerID – The layer ID of the scanning path. Zero index

Returns
Stating time, and ending time of a path, on a layer.

is_heat_source_on(time: float)→ bool

Parameters
time – The time (s)

Returns
True if the heat source is ON
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class tc_python.am.ScanningStrategy

Bases: object

The scanning pattern of the heat source.

Single track, bidirectional (flipping scanning direction of the heat source between alternate tracks), or unidirec-
tional (same scanning direction of the heat source for all tracks) are available.

classmethod bi_directional()

A bidirectional scanning strategy (flipping scanning direction of the heat source between alternate tracks).

Returns
A new BiDirectionalScanningStrategy object

set_cooling_time(cooling_time: float)
Sets the cooling time.

Default: 0 [s]

Parameters
cooling_time – [s]

Returns
This ScanningStrategy object

classmethod single_track()

A single track scanning strategy.

Returns
A new SingleTrackScanningStrategy object

classmethod uni_directional()

A unidirectional scanning strategy (same scanning direction of the heat source for all tracks).

Returns
A new UniDirectionalScanningStrategy object

class tc_python.am.ScheilMaterialProperties(scheil_result: ScheilCalculationResult,
interface_scattering_constant: float = 0.0, note: str = '')

Bases: MaterialProperties

Material properties created from the result of a Scheil calculation.

class tc_python.am.SingleTrackScanningStrategy

Bases: ScanningStrategy

A single track scanning strategy.

get_type()→ str
Returns the type of scanning strategy.

Returns
The type

set_margin(margin: float = 0.001)
Sets the margin.

This is the offset of the scanning path from the sides of the computational domain. In case of single tracks,
offset is placed from the sides transverse to the scanning direction.

Default: 1.0e-3 [m]
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Parameters
margin – The margin [m]

Returns
This SingleTrackScanningStrategy object

set_number_of_layers(number_of_layers: int = 1)
Sets the number of layers.

Default: 1

Parameters
number_of_layers – The number of layers

Returns
This SingleTrackScanningStrategy object

set_powder_fill_time(powder_fill_time: float = 0.0)
Sets the powder fill time.

Default: 0 [s]

Parameters
powder_fill_time – [s]

Returns
This SingleTrackScanningStrategy object

class tc_python.am.Smoothing(value)
Bases: Enum

The smoothing level used in the class MaterialProperties.

CONSTANT = -200

Constant smoothing

LARGE = 600

Large smoothing

LINEAR = -100

Linear smoothing

LITTLE = 60

Little smoothing

MEDIUM = 150

Medium smoothing

NONE = 0

No smoothing

class tc_python.am.SteadyStateCalculation(calculation)
Bases: AdditiveManufacturingCalculation

A steady-state Additive Manufacturing calculation.

Note: This computes the temperature distribution in a steady-state environment, either on a bare metal substrate
or with a powder layer on the top, with the possibility to add fluid flow inside the melt pool.
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calculate(timeout_in_minutes: float = 0.0)→ SteadyStateResult
Runs the calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
:class`UnrecoverableCalculationException` will be thrown, the current TCPython-block will
be unusable and a new TCPython block must be created for further calculations.

Returns
A SteadyStateResult which later can be used to get specific values from the calculated
result

class tc_python.am.SteadyStateResult(result)
Bases: AdditiveManufacturingResult

A result for a steady-state calculation.

get_heat_affected_zone_depth()→ float
Returns the depth of the heat affected zone.

Returns
The depth of the heat affected zone [m]

get_heat_affected_zone_length()→ float
Returns the length of the heat affected zone.

Returns
The heat affected zone length [m]

get_heat_affected_zone_width()→ float
Returns the width of the heat affected zone.

Returns
The width of the heat affected zone [m]

get_keyhole_depth()→ float
The depth of the keyhole.

Returns
The depth of the keyhole [m]

get_keyhole_length()→ float
The length of the keyhole.

Returns
The length of the keyhole [m]

get_keyhole_width()→ float
The width of the keyhole.

Returns
The width of the keyhole [m]

get_meltpool_depth()→ float
Returns the meltpool depth.

Returns
The meltpool depth [m]
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get_meltpool_length()→ float
Returns the meltpool length.

Returns
The meltpool length [m]

get_meltpool_width()→ float
Returns the meltpool width.

Returns
The meltpool width [m]

has_keyhole()→ bool
Returns if the result contains a keyhole.

Returns
True if the result has a keyhole

class tc_python.am.TopBoundaryConditions

Bases: object

The top boundary conditions of the simulation.

disable_evaporation()

Disables the evaporation heat loss due to heating of the powder layer or the metallic surface when being
close to the evaporation temperature.

Default: enabled

Returns
This TopBoundaryConditions object

enable_evaporation()

Enables the evaporation heat loss due to heating of the powder layer or the metallic surface when being
close to the evaporation temperature.

Default: enabled

Returns
This TopBoundaryConditions object

set_convective_heat_coefficient(convective_heat_coefficient: float = 20.0)
Sets the convective heat transfer coefficient for the top surface to the surrounding gas.

Enter 0 to disable convective heat transfer.

Default: 20.0 W/m**2

Parameters
convective_heat_coefficient – The convective heat transfer coefficient [W/m**2]

Returns
This TopBoundaryConditions object

set_radiation_emissivity(radiation_emissivity: float = 0.8)
Sets the radiation from the top surface to the surrounding gas.

Enter 0 to disable radiation.

Default: 0.8

Parameters
radiation_emissivity – The radiation emissivity, range: [0 - 1] [-]
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Returns
This TopBoundaryConditions object

class tc_python.am.TophatHeatSource(absorptivity: float = 60.0)
Bases: object

A Tophat heat source.

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This TophatHeatSource object

get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity(absorptivity: float = 60.0)
Sets the absorptivity as a constant.

Default: 60%

Parameters
absorptivity – The absorptivity [%]

Returns
This TophatHeatSource object

set_beam_radius(beam_radius: float = 0.00011)
Sets the beam radius.

Default: 110.0e-6 m

Parameters
beam_radius – The beam radius [m]

Returns
This TophatHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This TophatHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This TophatHeatSource object
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with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This TophatHeatSource object

class tc_python.am.TransientCalculation(calculation)
Bases: AdditiveManufacturingCalculation

A transient Additive Manufacturing calculation.

Note: This computes the temperature distribution in a transient case with the given scanning strategy including
multiple paths and layers and the possibility to add fluid flow inside the melt pool.

add_probe(coordinate: ProbeCoordinate)
Adds a probe, this a point in the simulation domain whose properties can be obtained from the result after
the calculation using TransientResult.get_temperatures_at_probe().

Parameters
coordinate – The probe to be added

Returns
This TransientCalculation object

calculate(timeout_in_minutes: float = 0.0)→ TransientResult
Runs the calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will
be unusable and a new TCPython block must be created for further calculations.

Returns
A TransientResult which later can be used to get specific values from the calculated result

get_scanning_path()

Returns
The calculation’s scanning pattern object

remove_all_probes()

Removes all probes.

Returns
This TransientCalculation object

remove_probe(coordinate: ProbeCoordinate)
Removes a probe.

Parameters
coordinate – The coordinates of the probe to be removed

Returns
This TransientCalculation object
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set_length(length: float = 0.005)
Sets the length of the simulation domain.

Default: 5.0e-3 m :param length: The length [m] :return: This TransientCalculation object

set_width(width: float = 0.004)
Sets the width of the simulation domain.

Default: 4.0e-3 m

Parameters
width – The width [m]

Returns
This TransientCalculation object

with_scanning_strategy(scanning_strategy: ScanningStrategy)
Sets the scanning strategy of the heat source, i.e. beam.

Parameters
scanning_strategy – The scanning strategy

Returns
This TransientCalculation object

class tc_python.am.TransientResult(result)
Bases: AdditiveManufacturingResult

A result for transient calculations (also with steady-state heat source).

get_temperatures_at_probe(coordinate: ProbeCoordinate)→ Tuple[List[float], List[float]]
Obtains the temperature at a probe (i.e., a point in the simulation domain) that had pre-
viously been defined for the calculation using TransientCalculation.add_probe() or
TransientWithSteadyStateCalculation.add_probe().

Parameters
coordinate – The coordinates of the probe - must have been defined in the calculator pre-
viously

Returns
A tuple (time points [s], temperatures [K])

get_time_steps()→ List[float]

Returns
List of the available time steps

set_active_time(step: int)
Set the step to be active

class tc_python.am.TransientWithSteadyStateCalculation(transient_with_ss_calculation,
ss_calculation)

Bases: AdditiveManufacturingCalculation

A transient Additive Manufacturing calculation using a heat source from steady-state.

Note: This computes the temperature distribution in a transient case with the given scanning strategy including
multiple paths and layers.

1. A steady-state simulation runs with the configured heat source and with the possibility to add fluid flow in
the melt pool.
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2. A volume heat source (based on the solution of steady-state calculation) is used in the transient simulation.

Tip: This type of calculation is significantly faster than fully transient calculations using
TransientCalculation.

add_probe(coordinate: ProbeCoordinate)
Adds a probe, this a point in the simulation domain whose properties can be obtained from the result after
the calculation using TransientResult.get_temperatures_at_probe().

Parameters
coordinate – The probe to be added

Returns
This TransientWithSteadyStateCalculation object

calculate(timeout_in_minutes: float = 0.0)→ TransientResult
Runs the calculation.

Parameters
timeout_in_minutes – Used to prevent the calculation from running longer than what
is wanted, or from hanging. If the calculation runs longer than timeout_in_minutes, a
UnrecoverableCalculationException will be thrown, the current TCPython-block will
be unusable and a new TCPython block must be created for further calculations.

Returns
A TransientResult which later can be used to get specific values from the calculated result

disable_fluid_flow_marangoni()

Disables the fluid flow modelling of the Marangoni effect.

Default: Enabled

Returns
This TransientWithSteadyStateCalculation object

disable_separate_materials()

Disables separate material properties for powder and solid material.

Default: Disabled

Returns
This TransientWithSteadyStateCalculation object

enable_fluid_flow_marangoni()

Enables the fluid flow modelling of the Marangoni effect.

Default: Enabled

Note: This option is not possible to use in conjunction with the option separate material, which is therefore
automatically disabled.

Returns
This TransientWithSteadyStateCalculation object
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enable_separate_materials()

Enables separate material properties for powder and solid material.

Default: Disabled

Note: This option is not possible to use in conjunction with the option Marangoni fluid flow, which is
therefore automatically disabled.

Returns
This TransientWithSteadyStateCalculation object

remove_all_probes()

Removes all probes.

Returns
This TransientWithSteadyStateCalculation object

remove_probe(coordinate: ProbeCoordinate)
Removes a probe.

Parameters
coordinate – The coordinates of the probe to be removed

Returns
This TransientWithSteadyStateCalculation object

set_ambient_temperature(temperature: float = 296.15)
Sets the ambient temperature.

Default: 23 degree Celsius

Parameters
temperature – The ambient temperature [K]

Returns
This TransientWithSteadyStateCalculation object

set_base_plate_temperature(temperature: float = 303.15)
Sets the baseplate temperature.

Default: 30 degree Celsius

Parameters
temperature – The baseplate temperature [K]

Returns
This TransientWithSteadyStateCalculation object

set_gas_pressure(pressure: float = 100000.0)
Sets the gas pressure.

Default: 1.0e5 Pa

Parameters
pressure – The pressure [Pa]

Returns
This TransientWithSteadyStateCalculation object
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set_height(height: float = 0.002)
Sets the height of the simulation domain.

Default: 2.0e-3 m

Parameters
height – The height [m]

Returns
This TransientWithSteadyStateCalculation object

set_layer_thickness(layer_thickness: float = 4e-05)
Sets the layer thickness.

Default: 40.0e-6 m

Parameters
layer_thickness – The layer thickness [m]

Returns
This TransientWithSteadyStateCalculation object

set_length(length: float = 0.005)
Sets the length of the simulation domain.

Default: 5.0e-3 m :param length: The length [m] :return: This
TransientWithSteadyStateCalculation object

set_powder_density(powder_density: float = 80.0)
Sets the powder density.

Default: 80.0%

Parameters
powder_density – The powder density [%]

Returns
This TransientWithSteadyStateCalculation object

set_width(width: float = 0.004)
Sets the width of the simulation domain.

Default: 4.0e-3 m

Parameters
width – The width [m]

Returns
This TransientWithSteadyStateCalculation object

with_heat_source(heat_source: HeatSource)
Sets the heat source.

Parameters
heat_source – The heat source

Returns
This TransientWithSteadyStateCalculation object

with_material_properties(material_properties: MaterialProperties)
Sets the material properties.
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Tip: Material properties can be defined like this: MaterialProperties.from_library("IN718") or
MaterialProperties.from_scheil_result(scheil_result).

Parameters
material_properties – The material properties

Returns
This TransientWithSteadyStateCalculation object

with_mesh(mesh: Mesh)
Sets the mesh.

Parameters
mesh – The mesh

Returns
This TransientWithSteadyStateCalculation object

with_numerical_options(numerical_options: NumericalOptions)
Sets the numerical options.

Parameters
numerical_options – The numerical options

Returns
This TransientWithSteadyStateCalculation object

with_scanning_strategy(scanning_strategy: ScanningStrategy)
Sets the scanning strategy of the heat source, i.e. beam.

Parameters
scanning_strategy – The scanning strategy

Returns
This TransientWithSteadyStateCalculation object

with_top_boundary_conditions(boundary_conditions: TopBoundaryConditions)
Sets the boundary conditions.

Parameters
boundary_conditions – The boundary conditions

Returns
This TransientWithSteadyStateCalculation object

class tc_python.am.UniDirectionalScanningStrategy

Bases: ScanningStrategy

A unidirectional scanning strategy (same scanning direction of the heat source for all tracks).

get_type()→ str
Returns the type of scanning strategy.

Returns
The type
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set_angle(angle: float = 0.0)
Sets the rotation of the scanning direction between two consecutive layers.

Note: The scanning direction of the first layer is always aligned parallel to the x-axis.

Default: 0 degree

Parameters
angle – The angle [degree]

Returns
This UniDirectionalScanningStrategy object

set_hatch_spacing(hatch_spacing: float = 0.0)
Sets the horizontal separation between two consecutive tracks.

Default: 0 m

Parameters
hatch_spacing – The hatch spacing [m]

Returns
This UniDirectionalScanningStrategy object

set_lift_time(lift_time: float = 0.0)
Sets the lift time, i.e. the time between two tracks where the heat source is inactive.

Default: 0 s

Parameters
lift_time – The lift time [s]

Returns
This UniDirectionalScanningStrategy object

set_margin(margin: float = 0.001)
Sets the margin.

This is the offset of the scanning path from the sides of the computational domain.

Default: 1.0e-3 [m]

Parameters
margin – The margin [m]

Returns
This UniDirectionalScanningStrategy object

set_number_of_layers(number_of_layers: int = 1)
Sets the number of layers.

Default: 1

Parameters
number_of_layers – The number of layers

Returns
This UniDirectionalScanningStrategy object
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set_powder_fill_time(powder_fill_time: float = 0.0)
Sets the powder fill time.

Default: 0 s

Parameters
powder_fill_time – The powder fill time [s]

Returns
This UniDirectionalScanningStrategy object

class tc_python.am.UserDefinedCoreRingHeatSource(function: str = '60.0')
Bases: object

A CoreRing heat source (with user defined absorptivity)

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This UserDefinedCoreRingHeatSource object

static get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity_function(function: str = '60')

Parameters
function – The absorptivity user defined function value to set for the heat source, provided
as a string.

Returns
This UserDefinedCoreRingHeatSource object

set_beam_radius_core(beam_radius_core: float = 5e-05)
Sets the beam radius-Core.

Default: 50.0e-6 m

Parameters
beam_radius_core – The beam radius of the core beam [m]

Returns
This CoreRingHeatSource object

set_beam_radius_ring(beam_radius_ring: float = 3.3e-05)
Sets the beam radius-Ring.

Default: 33.0e-6 m

Note: set_beam_radius_ring() cannot be used with set_core_ring_index().

Parameters
beam_radius_ring – The beam radius of the ring beam [m]

Returns
This CoreRingHeatSource object
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set_core_ring_index(core_ring_index: CoreRingIndex = CoreRingIndex.INDEX_0)
Sets the Core-Ring Index. Beam radius-Ring, Ring radius and Percentage of power in ring are then set to
a value based on the selected Index and Beam radius-Core.

Default: CoreRingIndex.INDEX_0

Note: set_core_ring_index() cannot be used with set_beam_radius_ring(),
set_ring_radius() or set_ring_power_percent().

Parameters
core_ring_index – The index (INDEX_0 - INDEX_6) of the Core-Ring laser system

Returns
This CoreRingHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This UserDefinedCoreRingHeatSource object

set_ring_power_percent(ring_power_percent: float = 7.0)
Sets the percentage of the power of the heat source in the ring beam

Default: 7.0 %

Note: set_ring_power_percent() cannot be used with set_core_ring_index().

Parameters
ring_power_percent – The percentage of power in the ring bean [%]

Returns
This CoreRingHeatSource object

set_ring_radius(ring_radius: float = 9.858e-05)
Sets the ring radius.

Default: 98.58e-6 m

Note: set_ring_radius() cannot be used with set_core_ring_index().

Parameters
ring_radius – The radius of the ring beam [m]

Returns
This CoreRingHeatSource object
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set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This UserDefinedCoreRingHeatSource object

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This UserDefinedCoreRingHeatSource object

class tc_python.am.UserDefinedGaussianHeatSource(function: str = '60.0')
Bases: object

A Gaussian heat source (with user defined absorptivity)

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This GaussianHeatSource object

static get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity_function(function: str = '60')

Parameters
function – The absorptivity user defined function value to set for the heat source, provided
as a string.

Returns
This GaussianHeatSource object

set_beam_radius(beam_radius: float = 0.00011)
Sets the beam radius.

Default: 110.0e-6 m

Parameters
beam_radius – The beam radius [m]

Returns
This GaussianHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W
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Parameters
power – The power [W]

Returns
This GaussianHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This GaussianHeatSource object

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This GaussianHeatSource object

class tc_python.am.UserDefinedTophatHeatSource(function: str = '60.0')
Bases: object

A Tophat heat source (with user defined absorptivity)

disable_keyhole_model()

Disables using a keyhole model in the simulation.

Returns
This UserDefinedTophatHeatSource object

static get_type()→ str
Returns the type of heat source.

Returns
The type

set_absorptivity_function(function: str = '60')

Parameters
function – The absorptivity user defined function value to set for the heat source, provided
as a string.

Returns
This UserDefinedTophatHeatSource object

set_beam_radius(beam_radius: float = 0.00011)
Sets the beam radius.

Default: 110.0e-6 m

Parameters
beam_radius – The beam radius [m]
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Returns
This UserDefinedTophatHeatSource object

set_power(power: float = 120.0)
Sets the power of the heat source.

Default: 120 W

Parameters
power – The power [W]

Returns
This UserDefinedTophatHeatSource object

set_scanning_speed(beam_speed: float = 0.5)
Sets the moving velocity of the heat source.

Default: 500.0e-3 m/s

Parameters
beam_speed – The beam speed [m/s]

Returns
This UserDefinedTophatHeatSource object

with_keyhole_model(config: KeyholeModel)
Sets the keyhole model applied in the simulation.

Default: None
Parameters
config – The keyhole model

Returns
This UserDefinedTophatHeatSource object

class tc_python.am.Zone(value)
Bases: Enum

Zones to be used in combination with keyhole model and material properties.

LIQUID = 2

Liquid zone

MUSHY = 1

Mushy zone

SOLID = 0

Solid zone

VAPOR = 3

Vapor zone
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6.2 Module “system”

class tc_python.system.MultiDatabaseSystemBuilder(multi_database_system_builder)
Bases: object

Used to select databases, elements, phases etc. and create a System object. The difference to the class System-
Builder is that the operations are performed on all the previously selected databases. The system is then used to
create calculations.

create_and_select_species(stoichiometry: str)
Specify a species from the already entered elements. The stoichiometry of the species is the chemical
formula of the species. The created species will also be automatically selected.

Note: The elements in the chemical formula are normally separated by stoichiometric numbers. Neither
parenthesis “()” nor an underscore “_” is allowed in the chemical formula, while the special combination
“/-” or “/+” can be used. Consult the Thermo-Calc database documentation for details about the syntax.

Parameters
stoichiometry – The stoichiometry of the species

Returns
This MultiDatabaseSystemBuilder object

deselect_constituent_on_sublattice(phase_name: str, sublattice_no: int,
constituent_name_to_deselect: str)

Rejects a constituent on a sublattice in a phase in both the thermodynamic and the kinetic database.

Parameters
• phase_name – The name of the phase

• sublattice_no – The number of the sublattice (starting with 1)

• constituent_name_to_deselect – The name of the constituent to deselect

Returns
This MultiDatabaseSystemBuilder object

deselect_phase(phase_name_to_deselect: str)
Rejects a phase for both the thermodynamic and the kinetic database.

Parameters
phase_name_to_deselect – The phase name

Returns
This MultiDatabaseSystemBuilder object

deselect_species(species_name: str)
Removes the species from the system.

Parameters
species_name – The species

Returns
This MultiDatabaseSystemBuilder object
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get_system()→ System
Creates a new System object that is the basis for all calculation types. Several calculation types can be
defined later from the object; these are independent.

Returns
A new System object

select_constituent_on_sublattice(phase_name: str, sublattice_no: int, constituent_name_to_select:
str)

Selects a constituent on a sublattice in a phase in both the thermodynamic and the kinetic database.

Note: Previously the third parameter constituent_name_to_select had a wrong name, it has been corrected
in version 2021b.

Parameters
• phase_name – The name of the phase

• sublattice_no – The number of the sublattice (starting with 1)

• constituent_name_to_select – The name of the constituent to select

Returns
This MultiDatabaseSystemBuilder object

select_phase(phase_name_to_select: str)
Selects a phase for both the thermodynamic and the kinetic database.

Parameters
phase_name_to_select – The phase name

Returns
This MultiDatabaseSystemBuilder object

select_species(species_name: str)
Adds the species to the system. Up to 1000 species can be defined in a single system.

Parameters
species_name – The species

Returns
This MultiDatabaseSystemBuilder object

with_new_composition_set(composition_set: CompositionSet)
Used to enter two or more composition sets for a phase. If a phase has a miscibility gap it is necessary to
have two composition sets, one for each possible composition that can be stable simultaneously.

The databases often create the typical composition sets for phases automatically when data are retrieved.
The equilibrium calculations (using the default settings with global minimization) will usually add new
composition sets if needed.

Note: Precipitation and diffusion calculations can require the user to define additional composition sets.
E.g. in the case where the new composition set is needed in the configuration of the calculation.

Parameters
composition_set – the composition set
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Returns
This MultiDatabaseSystemBuilder object

without_default_phases()

Rejects all the default phases from both the thermodynamic and the kinetic database, any phase now needs
to be selected manually for the databases.

Returns
This MultiDatabaseSystemBuilder object

class tc_python.system.System(system_instance)
Bases: object

A system containing selections for databases, elements, phases etc.

Note: For the defined system, different calculations can be configured and run. Instances of this class should
always be created from a SystemBuilder.

Note: The system object is immutable, i.e. it cannot be changed after is has been created. If you want to change
the system, you must instead create a new one.

convert_composition(input_composition: Dict[str, float], input_unit: ConversionUnit, output_unit:
ConversionUnit, dependent_component: str = '')→ Dict[str, float]

Provides conversion between composition units for any combination of chemical compounds. It is fast
because no thermodynamic equilibrium calculation is involved.

Syntax of the chemical compounds: “Al2O3”, “FeO”, “CO”, “Fe”, “C”, . . .

Note: It is not required that the chemical compounds are components of the database. The only requirement
is that all elements are present in the database.

Parameters
• input_composition – Composition (for example: {“Al2O3”: 25.0, “FeO”: 75.0})

• input_unit – Unit of the input composition

• output_unit – Requested output unit

• dependent_component – The dependent component (optional), for example: “Fe”. If no
dependent component is specified the sum of the input composition needs to match 100%
/ 1

Returns
The composition in the requested output unit

get_all_elements_in_databases()→ List[str]
Returns the names of all elements present in the selected databases, regardless of the actual selection of
elements.

Returns
A list of element names
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get_all_phases_in_databases()→ List[str]
Returns all phase names present in the selected databases, regardless of selected elements, phases etc.

Returns
A list of phase names

get_all_species_in_databases()→ List[str]
Returns all species names present in the selected databases, regardless of the actual selection of elements,
phases, . . . .

Returns
A list of species names

get_database_names()→ List[str]
Returns the names of the selected thermodynamic and mobility databases.

Returns
A list of database names

get_element_object(element_name: str)→ Element
Returns the Element object of an element. This can be used to obtain detailed information about the
element.

Parameters
element_name – The element name

Returns
A Element: object

get_elements_in_system()→ List[str]
Returns the names of all elements present in the selected system.

Note: The list does not contain any elements or components that have been auto-selected by the database(s)
in a calculator. Use the get_components() of the calculator object instead to get the complete information.

Returns
A list of element names

get_phase_object(phase_name: str)→ Phase
Returns the Phase object of a phase. This can be used to obtain detailed information about the phase.

Parameters
phase_name – The phase name

Returns
A Phase: object

get_phases_in_system()→ List[str]
Returns all phase names present in the system due to its configuration (selected elements, phases, etc.).

Returns
A list of phase names

get_references()→ Dict[str, List[str]]
Provides a dictionary with database references per database in the selected system.

Returns
The database references
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get_species_in_system()→ List[str]
Returns the names of all species present in the selected system.

Note: The list does not contain any species or components that have been auto-selected by the database(s)
in a calculator. Use the get_components() of the calculator object instead to get the complete information.

Returns
The list of species names

get_species_object(species_name: str)→ Species
Returns the Species object of an species. This can be used to obtain detailed information about the species.

Parameters
species_name – The species name

Returns
A Species: object

get_system_data()→ SystemData
Returns the content of the database. This can be used to modify the parameters and functions and to change
the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

with_batch_equilibrium_calculation(default_conditions: bool = True, components: List[str] = [])→
BatchEquilibriumCalculation

Creates a batch-equilibrium calculation (a vectorized equilibrium calculation).

Note: Use this instead of looping if you want to calculate equilibria for a larger number of compositions
and know the conditions in advance. This calculation type has improved performance when calculating a
large number of equilibria when each individual calculations is quick. E.g. when evaluating single phase
properties for thousands of compositions.

Parameters
• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new BatchEquilibriumCalculation object

with_cct_precipitation_calculation()→ PrecipitationCCTCalculation
Creates a CCT diagram calculation.

Returns
A new PrecipitationCCTCalculation object
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with_isothermal_diffusion_calculation()→ DiffusionIsoThermalCalculation
Creates an isothermal diffusion calculation.

Returns
A new DiffusionIsoThermalCalculation object

with_isothermal_precipitation_calculation()→ PrecipitationIsoThermalCalculation
Creates an isothermal precipitation calculation.

Returns
A new PrecipitationIsoThermalCalculation object

with_material_to_material()→ MaterialToMaterialCalculationContainer
Provides access to all Material to Material calculations. The actual calculation needs to be chosen in the
returned object.

Returns
A new MaterialToMaterialCalculationContainer object

with_non_isothermal_diffusion_calculation()→ DiffusionNonIsoThermalCalculation
Creates a non-isothermal precipitation calculation.

Returns
A new PrecipitationNonIsoThermalCalculation object

with_non_isothermal_precipitation_calculation()→ PrecipitationNonIsoThermalCalculation
Creates a non-isothermal precipitation calculation.

Returns
A new PrecipitationNonIsoThermalCalculation object

with_phase_diagram_calculation(default_conditions: bool = True, components: List[str] = [])→
PhaseDiagramCalculation

Creates a phase diagram (map) calculation.

Parameters
• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new PhaseDiagramCalculation object

with_property_diagram_calculation(default_conditions: bool = True, components: List[str] = [])→
PropertyDiagramCalculation

Creates a property diagram (step) calculation.

Parameters
• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new PropertyDiagramCalculation object
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with_property_model_calculation(model: str, path_to_models: str = '', debug_model: bool = False)→
PropertyModelCalculation

Creates a Property Model calculation.

The parameter debug_model is only used when debugging self-developed models.

Parameters
• model – The Property Model to be calculated.

• path_to_models – The path where the Property Models are installed. If no value is en-
tered, the Property Models folder used by the normal Thermo-Calc application is used.

• debug_model – Used when debugging self-developed models.

Returns
A new PropertyModelCalculation object

with_scheil_calculation()→ ScheilCalculation
Creates a Scheil solidification calculation.

Returns
A new ScheilCalculation object

with_single_equilibrium_calculation(default_conditions: bool = True, components: List[str] = [])
→ SingleEquilibriumCalculation

Creates a single equilibrium calculation.

Parameters
• default_conditions – If True, automatically sets the conditions N=1 and P=100000

• components – Specify here the components of the system (for example: [AL2O3, . . . ]),
only necessary if they differ from the elements. If this option is used, all elements of the
system need to be replaced by a component.

Returns
A new SingleEquilibriumCalculation object

with_ttt_precipitation_calculation()→ PrecipitationTTTCalculation
Creates a TTT diagram calculation.

Returns
A new PrecipitationTTTCalculation object

class tc_python.system.SystemBuilder(system_builder)
Bases: object

Used to select databases, elements, phases etc. and create a System object. The system is then used to create
calculations.

create_and_select_species(stoichiometry: str)
Specify a species from the already entered elements. The stoichiometry of the species is the chemical
formula of the species. The created species will also be automatically selected.

Note: The elements in the chemical formula are normally separated by stoichiometric numbers. Neither
parenthesis “()” nor an underscore “_” is allowed in the chemical formula, while the special combination
“/-” or “/+” can be used. Consult the Thermo-Calc database documentation for details about the syntax.
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Parameters
stoichiometry – The stoichiometry of the species

Returns
This SystemBuilder object

deselect_constituent_on_sublattice(phase_name: str, sublattice_no: int,
constituent_name_to_deselect: str)

Rejects a constituent on a sublattice in a phase in the last specified database only.

Parameters
• phase_name – The name of the phase

• sublattice_no – The number of the sublattice (starting with 1)

• constituent_name_to_deselect – The name of the constituent to deselect

Returns
This SystemBuilder object

deselect_phase(phase_name_to_deselect: str)
Rejects a phase in the last specified database only.

Parameters
phase_name_to_deselect – The name of the phase

Returns
This SystemBuilder object

deselect_species(stoichiometry: str)
Removes the species from the system.

Parameters
stoichiometry – The species

Returns
This SystemBuilder object

get_system()→ System
Creates a new System object that is the basis for all calculation types. Several calculation types can be
defined later from the object; these are independent.

Returns
A new System object

select_constituent_on_sublattice(phase_name: str, sublattice_no: int, constituent_name_to_select:
str)

Selects a constituent on a sublattice in a phase in the last specified database only.

Note: Previously the third parameter constituent_name_to_select had a wrong name, it has been corrected
in version 2021b.

Parameters
• phase_name – The name of the phase

• sublattice_no – The number of the sublattice (starting with 1)

• constituent_name_to_select – The name of the constituent to select
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Returns
This SystemBuilder object

select_database_and_elements(database_name: str, list_of_element_strings: List[str])
Selects a thermodynamic or kinetic database and its selected elements (that will be appended). After that,
phases can be selected or unselected.

Parameters
• database_name – The database name, for example “FEDEMO”

• list_of_element_strings – A list of one or more elements as strings, for example
[“Fe”, “C”]

Returns
This SystemBuilder object

select_phase(phase_name_to_select: str)
Selects a phase in the last specified database only.

Parameters
phase_name_to_select – The name of the phase

Returns
This SystemBuilder object

select_species(stoichiometry: str)
Adds the species to the system. Up to 1000 species can be defined in a single system.

Parameters
stoichiometry – The species

Returns
This SystemBuilder object

select_user_database_and_elements(path_to_user_database: str, list_of_element_strings: List[str])
Selects a thermodynamic database which is a user-defined database and select its elements (that will be
appended).

Note: By using a r-literal, it is possible to use slashes on all platforms, also on Windows: se-
lect_user_database_and_elements(r”my path/user_db.tdb”, [“Fe”, “Cr”]])

Otherwise it is required to use double back-slashes on Windows as separator.

Note: On Linux and Mac the path is case-sensitive, also the file ending.

Parameters
• path_to_user_database – The path to the database file (“database”.TDB), defaults to

the current working directory. Only the filename is required if the database is located in
the same folder as the script.

• list_of_element_strings – A list of one or more elements as strings, for example
[“Fe”, “C”]

Returns
This SystemBuilder object
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with_new_composition_set(composition_set: CompositionSet)
Used to enter composition sets for a phase. If a phase has a miscibility gap it is necessary to have two
composition sets, one for each possible composition that can be stable simultaneously.

Parameters
composition_set – The composition set

Returns
This SystemBuilder object

without_default_phases()

Rejects all default phases in the last specified database only, any phase needs now to be selected manually
for that database.

Returns
This SystemBuilder object

6.3 Module “entities”

class tc_python.entities.CompositionSet(phase_name: str)
Bases: object

Used by the method tc_python.system.SystemBuilder.with_new_composition_set() to enter two or
more composition sets for a phase.

Parameters
phase_name – The name of the phase for which a new composition set is required

set_major_constituents_for_sublattice(sublattice_index: int, major_constituents: List[str])
Specify the new major constituent(s) for the sublattice.

Default: If not specified, a default is automatically chosen based on the specified composition set.

Note: This is useful in order to make calculations converge faster and more easily (because it may simplify
giving start values when calculating the equilibrium as those phases with miscibility gaps should have
different major constituents for each composition set). The databases often set major constituents for
several phases automatically when the data is retrieved.

Parameters
• sublattice_index – Index of the sublattice to set the major constituents for (starting

with 1)

• major_constituents – Optional list of the major constituents, which must be selected
from the phase constitution of the current system.

Returns
This CompositionSet object

class tc_python.entities.Element(element)
Bases: object

Represents an element, making detailed information about the element accessible.
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get_enthalpy()→ float
Returns the enthalpy of the element at 298 K, part of the stable element reference state (SER).

Returns
The enthalpy [J]

get_entropy_diff_0_to_298k()→ float
Returns the entropy difference 0 - 298 K of the element, part of the stable element reference state (SER).

Returns
The entropy difference 0 - 298 K [J/K]

get_molar_mass()→ float
Returns the molar mass of the element.

Returns
The molar mass [g/mol]

get_name()→ str
Returns the name of the element.

Returns
The element name

get_stable_element_reference()→ str
Returns the stable element reference (i.e. the stable phase at 298.15 K and 1 bar, reference for all element
thermodynamic data).

Returns
The name of the stable element reference

is_interstitial()→ bool
Returns if the element is interstitial.

Note: In the diffusion simulations (DICTRA), the assumption that the volume is carried by the substitu-
tional elements only is applied. The interstitial elements are assumed to have zero molar volumes.

Returns
If the element is interstitial

is_special()→ bool
Returns if the element is special (i.e. vacancies (VA) and electrons (denoted either as /- in gaseous, liquid
or solid phases, or ZE in an aqueous solution phase)).

Returns
If the element is special

is_valid()→ bool
Returns if the element is valid. Non-valid elements are represented by an empty name.

Returns
If the element is valid

class tc_python.entities.Phase(phase)
Bases: object

Represents a phase, making detailed information about the phase accessible.
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get_name()→ str
Returns the name of the phase.

Returns
The phase name

get_species()→ Set[Species]
Returns the species of the phase.

Returns
A set containing the species

get_species_for_composition_profile()→ Set[Species]
Returns all species that need to be defined in a composition profile of the phase for diffusion simulations -
except for one species that needs to be the dependent species.

Note: In a composition profile of a phase for diffusion simulations it is necessary to specify all non-
stoichiometric and non-special species. In case of a DILUTE diffusion model, the database enforces the
choice of a certain dependent species.

Returns
Set with the species

get_sublattices()→ List[Sublattice]
Returns the sublattices of the phase in a well-defined contiguous order.

Returns
A list containing the Sublattice objects

get_type()→ PhaseType
Returns the type of the phase (liquid, ionic liquid, solid, gas).

Returns
The type of a phase

has_diffusion_data()→ bool
Returns if diffusion data exists for the phase.

Returns
If diffusion data exists for the phase

has_molar_volume_data()→ bool
Returns if molar volume data exists for the phase.

Returns
If molar volume data exists for the phase

is_dilute_diffusion_model()→ bool
Returns if diffusion is described using the DILUTE model for the phase. This will always return False if
no diffusion data is available.

Returns
If the DILUTE model is used

is_gas()→ bool
Returns if the phase is a gas phase.
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Returns
If the phase is a gas phase

is_ionic_liquid()→ bool
Returns if the phase is an ionic liquid phase.

Returns
If the phase is an ionic liquid phase

is_liquid()→ bool
Returns if the phase is a liquid or ionic liquid phase.

Returns
If the phase is a liquid phase

is_solid()→ bool
Returns if the phase is a solid phase.

Returns
If the phase is a solid phase

class tc_python.entities.PhaseType(value)
Bases: Enum

The type of a phase.

GAS = 0

Gas phase.

IONIC_LIQUID = 2

Ionic liquid phase.

LIQUID = 1

Liquid phase.

SOLID = 3

Solid phase.

class tc_python.entities.Species(species)
Bases: object

Represents a species, making detailed information about the species accessible.

get_all_elements()→ List[Tuple[Element, float]]
Returns all the elements that the species is composed of.

Returns
List of all elements of the species and their stoichiometry

get_charge()→ int
Returns the charge of the species.

Returns
The charge of the species

get_name()→ str
Returns the name of the species.

Returns
The species name

6.3. Module “entities” 315



TC-Python Documentation, Release 2025b

is_element()→ bool
Returns if the species actually represents an element.

Returns
If the species represents an element

is_interstitial()→ bool
Returns if the species is interstitial.

Note: In the diffusion simulations (DICTRA), the assumption that the volume is carried by the substitu-
tional elements only is applied. The interstitial elements are assumed to have zero molar volumes.

Returns
If the species is interstitial

is_special()→ bool
Returns if the species is special (i.e. vacancies (VA) and electrons (denoted either as /- in gaseous, liquid
or solid phases, or ZE in an aqueous solution phase)).

Returns
If the species is special

is_valid()→ bool
Returns if the species is valid. Non-valid species are represented by an empty name.

Returns
If the species is valid

to_element()→ Element
Returns the Element representation of the species - if the species actually represents an element.

Returns
The Element object

class tc_python.entities.Sublattice(sublattice)
Bases: object

Represents a sublattice of a phase.

get_constituents()→ Set[Species]
Returns the constituents of the sublattice.

Returns
A set containing the constituents

get_nr_of_sites()→ float
Returns the number of sites in the sublattice.

Returns
A float number
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6.4 Module “server”

class tc_python.server.AdditiveManufacturingCalculations(additive_manufacturing_calculations)
Bases: object

Provides access to the calculation objects for all Additive Manufacturing calculations.

with_steady_state_calculation(moose_commands: Optional[Dict[str, str]] = None)→
SteadyStateCalculation

Creates a steady-state calculation for Additive Manufacturing.

Note: This computes the temperature distribution in a steady-state environment, either on a bare metal
substrate or with a powder layer on the top, with the possibility to add fluid flow inside the melt pool.

Warning: It should not be necessary for most users to send commands directly to the FEM-solver, try
to use the corresponding method implemented in the API instead.

Parameters
moose_commands – Additional commands (key-value pairs) directly sent to the FEM solver
- this is a special option that is normally not needed

Returns
A new SteadyStateCalculation object

with_transient_calculation(moose_commands: Optional[Dict[str, str]] = None)→
TransientCalculation

Creates a transient calculation for Additive Manufacturing.

Note: This computes the temperature distribution in a transient case with the given scanning strategy
including multiple paths and layers and the possibility to add fluid flow inside the melt pool.

Warning: It should not be necessary for most users to send commands directly to the FEM-solver, try
to use the corresponding method implemented in the API instead.

Parameters
moose_commands – Additional commands (key-value pairs) directly sent to the FEM solver
- this is a special option that is normally not needed

Returns
A new TransientCalculation object

with_transient_with_steady_state_calculation(moose_commands: Optional[Dict[str, str]] =
None)→ TransientWithSteadyStateCalculation

Creates a transient calculation (with steady-state heat source) for Additive Manufacturing.

Note: This computes the temperature distribution in a transient case with the given scanning strategy
including multiple paths and layers.
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1. A steady-state simulation runs with the configured heat source and with the possibility to add fluid
flow in the melt pool.

2. A volume heat source (based on the solution of steady-state calculation) is used in the transient simu-
lation.

Tip: This type of calculation is significantly faster than fully transient calculations using
TransientCalculation.

Warning: It should not be necessary for most users to send commands directly to the FEM-solver, try
to use the corresponding method implemented in the API instead.

Parameters
moose_commands – Additional commands (key-value pairs) directly sent to the FEM solver
- this is a special option that is normally not needed

Returns
A new TransientWithSteadyStateCalculation object

class tc_python.server.LoggingPolicy(value)
Bases: Enum

Logging policy that determines how the TC-Python logs are presented to the user.

FILE = 1

Logging to a file.

NONE = 2

No logging at all.

SCREEN = 0

Logging to the screen.

class tc_python.server.MetallurgyCalculations(metallurgy_calculations)
Bases: object

Provides access to the calculation objects for all Process Metallurgy calculations.

These are specialised calculations for working with metallurgical processes. Both equilibrium calculations and
kinetic process simulations (Effective Equilibrium Reaction Zone model) are available.

with_adiabatic_equilibrium_calculation(database: ProcessDatabase)→
AdiabaticEquilibriumCalculation

Creates an adiabatic equilibrium calculation for Process Metallurgy.

Parameters
database – The thermodynamic database used in the calculation

Returns
A new AdiabaticEquilibriumCalculation object

with_adiabatic_process_calculation(database: ProcessDatabase)→ ProcessSimulationCalculation
Creates an adiabatic kinetic process simulation (EERZ, i.e. Effective Equilibrium Reaction Zone model).
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Parameters
database – The thermodynamic database used in the calculation

Returns
A new ProcessSimulationCalculation object

with_isothermal_equilibrium_calculation(database: ProcessDatabase)→
IsoThermalEquilibriumCalculation

Creates an isothermal equilibrium calculation for Process Metallurgy.

Parameters
database – The thermodynamic database used in the calculation

Returns
A new IsoThermalEquilibriumCalculation object

class tc_python.server.ResultLoader(result_loader)
Bases: object

Contains methods for loading results from previously done calculations.

diffusion(path: str)→ DiffusionCalculationResult
Loads a DiffusionCalculationResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new DiffusionCalculationResult object which later can be used to get specific values
from the calculated result

phase_diagram(path: str)→ PhaseDiagramResult
Loads a PhaseDiagramResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new PhaseDiagramResult object which later can be used to get specific values from the
calculated result

precipitation_TTT_or_CCT(path: str)→ PrecipitationCalculationTTTorCCTResult
Loads a PrecipitationCalculationTTTorCCTResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new PrecipitationCalculationTTTorCCTResult object which later can be used to
get specific values from the calculated result

precipitation_single(path: str)→ PrecipitationCalculationSingleResult
Loads a PrecipitationCalculationSingleResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new PrecipitationCalculationSingleResult object which later can be used to get
specific values from the calculated result
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property_diagram(path: str)→ PropertyDiagramResult
Loads a PropertyDiagramResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new PropertyDiagramResult object which later can be used to get specific values from
the calculated result

property_model(path: str)→ PropertyModelResult
Loads a PropertyModelResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new PropertyModelResult object which later can be used to get specific values from the
calculated result

scheil(path: str)→ ScheilCalculationResult
Loads a ScheilCalculationResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new ScheilCalculationResult object which later can be used to get specific values
from the calculated result

single_equilibrium(path: str)→ SingleEquilibriumResult
Loads a SingleEquilibriumResult from disc.

Parameters
path – path to the folder where result was previously saved.

Returns
A new SingleEquilibriumResult object which later can be used to get specific values
from the calculated result

class tc_python.server.SetUp(debug_logging=False)
Bases: object

Starting point for all calculations.

Note: This class exposes methods that have no precondition, it is used for choosing databases and elements.

disable_caching()

A previously set cache folder is no longer used.

Note: Within the session, caching is activated and used through the default temporary directory.

Returns
This SetUp object
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get_database_info(database_short_name: str)→ str
Obtains the short information available for the specified database.

Parameters
database_short_name – The name of the database (i.e. “FEDEMO”, . . . )

Returns
The short information about the database

get_database_path_on_disk(database_short_name: str)→ str
Obtains the path to the database file on disk. TCPATH is a placeholder for the root path of the used Thermo-
Calc installation.

Note: Encrypted databases (*.TDC) cannot be edited.

Parameters
database_short_name – The name of the database (i.e. “FEDEMO”, . . . )

Returns
The path to the database on disk

get_databases()→ List[str]
Obtains the short names of all databases available in the used Thermo-Calc installation.

Note: Only databases with a valid license are listed.

Returns
List of the available databases

get_license_manager()→ LicenseManager
Returns the license manager, which is used for managing Thermo-calc licenses for TC-Python

Returns
the license manager

get_property_models(path_to_models: str = '')→ Set[str]
Lists the names of all Property Models in the specified directory.

If the directory is not specified, the Property Model folder used by the normal Thermo-Calc application is
used.

Parameters
path_to_models – The path where the Property Models are installed. If no value is entered,
the Property Model folder used by the normal Thermo-Calc application is used.

Returns
Set containing all Property Model names

load_result_from_disk()→ ResultLoader
Loads a previously calculated result from disk.

Note: This only works for results created by calling one of the save_result() methods on a Result class
created from a calculation.
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Returns
A new ResultLoader object

select_database_and_elements(database_name: str, list_of_elements: List[str])→ SystemBuilder
Selects a first thermodynamic or kinetic database and selects the elements in it.

Parameters
• database_name – The name of the database, for example “FEDEMO”

• list_of_elements – The list of the selected elements in that database, for example [“Fe”,
“C”]

Returns
A new SystemBuilder object

select_thermodynamic_and_kinetic_databases_with_elements(thermodynamic_db_name: str,
kinetic_db_name: str,
list_of_elements: List[str])→
MultiDatabaseSystemBuilder

Selects the thermodynamic and kinetic database at once, guarantees that the databases are added in the
correct order. Further rejection or selection of phases applies to both databases.

Parameters
• thermodynamic_db_name – The thermodynamic database name, for example

“FEDEMO”

• kinetic_db_name – The kinetic database name, for example “MFEDEMO”

• list_of_elements – The list of the selected elements in that database, for example [“Fe”,
“C”]

Returns
A new MultiDatabaseSystemBuilder object

select_user_database_and_elements(path_to_user_database: str, list_of_elements: List[str])→
SystemBuilder

Selects a user-defined database and selects the elements in it.

Note: By using a r-literal, it is possible to use slashes on all platforms, also on Windows: se-
lect_user_database_and_elements(r”my path/user_db.tdb”, [“Fe”, “Cr”]])

Otherwise it is required to use double back-slashes on Windows as separator.

Note: On Linux and Mac the path is case-sensitive, also the file ending.

Parameters
• path_to_user_database – The path to the database file (“database”.TDB), defaults to

the current working directory. Only filename is required if the database is located in the
same folder as the script.

• list_of_elements – The list of the selected elements in that database, for example [“Fe”,
“C”]

Returns
A new SystemBuilder object
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set_cache_folder(path: str = '', precision_for_floats: int = 12)
Sets a folder where results from calculations and state of systems are saved. If at any time a calculation
is run which has the exact same setting as a previous, the calculation is not re-run. The result is instead
loaded from this folder.

Note: The same folder can be used in several scripts, and it can even be shared between different users. It
can be a network folder.

Parameters
• path – path to the folder where results should be stored. It can be relative or absolute.

• precision_for_floats – The number of significant figures used when comparing if the
calculation has the same setting as a previous.

Returns
This SetUp object

set_ges_version(version: int = 6)
Setting the version of the Gibbs Energy System (GES).

Parameters
version – The GES-version (currently version 5 or 6)

Returns
This SetUp object

set_log_level_to_debug()

Sets log level to DEBUG

Returns
This SetUp object

set_log_level_to_info()

Sets log level to INFO

Returns
This SetUp object

with_additive_manufacturing()→ AdditiveManufacturingCalculations
Provides access to the calculation objects for all Additive Manufacturing calculations.

with_metallurgy()→ MetallurgyCalculations
Provides access to the calculation objects for all Process Metallurgy calculations.

These are specialised calculations for working with metallurgical processes. Both equilibrium calculations
and kinetic process simulations (Effective Equilibrium Reaction Zone model) are available.

class tc_python.server.TCPython(logging_policy=LoggingPolicy.SCREEN, log_file=None,
debug_mode=False, debug_logging=False,
do_throw_on_backend_hard_crash=True, port_number=0)

Bases: object

Starting point of the API. Typical syntax:

with TCPython() as session:
session.select_database_and_elements(...)
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Note: Each usage of with TCPython() causes significant overhead (starting a new process, stopping the old one,
cleaning up the temporary disk space). Usually it is recommendable to call with TCPython() only once for each
process, even if working in a loop. Instead you should pass the session or calculator object into the loop and use
them there.

If necessary, beginning from version 2019a it is however possible to call with TCPython safely multiple times.

tc_python.server.start_api_server(logging_policy=LoggingPolicy.SCREEN, log_file=None,
debug_mode=False, is_unittest=False,
do_throw_on_backend_hard_crash=True, port_number=0)

Starts a process of the API server and sets up the socket communication with it.

Parameters
• logging_policy – Determines if the TC-Python log output is sent to the screen (Log-

gingPolicy.SCREEN), to file (LoggingPolicy.FILE) or nothing is logged at all (LoggingPol-
icy.NONE) Default: LoggingPolicy.SCREEN. Note that the log-handlers can also be adapted
through the tc_python.LOGGER object at any time.

• log_file – The log-file relative to the current path or absolute, only relevant if log-
ging_policy=LoggingPolicy.FILE. Log-output will be appended.

• debug_mode – If True it is tried to open a connection to an already running API-server. This
is only used for debugging the API itself.

• is_unittest – Should be True if called by a unit test, only to be used internally for
development.

• do_throw_on_backend_hard_crash – If True an UnrecoverableCalculationException
will be thrown if the Java-backend crashes hard, if False the application will simply crash
with a FORTRAN-stacktrace. If `True` the exception can be caught outside of the `with`-
clause and the application can continue, if `False` more information about the error is shown
by the stacktrace..

• port_number – The port number for the communication with the Java-backend server. This
is not required to be changed by normal users.

Warning: Most users should use TCPython using a with-statement for automatic management of the re-
sources (network sockets and temporary files). If you anyway need to use that method, make sure to call
stop_api_server() in any case using the try-finally-pattern.

tc_python.server.start_matlab_server(logging_policy=LoggingPolicy.SCREEN, log_file=None,
debug_mode=False, is_unittest=False,
do_throw_on_backend_hard_crash=True, port_number=0)

tc_python.server.stop_api_server(gateway_id: Optional[str] = None)
Clears all resources used by the session (i.e. shuts down the API server and deletes all temporary files). The disk
usage of temporary files might be significant.

Warning: Call this method only if you used start_api_server() initially. It should never be called
when the API has been initialized in a with-statement using TCPython.
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6.5 Module “quantity_factory”

class tc_python.quantity_factory.DiffusionQuantity

Bases: AbstractQuantity

Factory class providing quantities used for defining diffusion simulations and their results.

Note: In this factory class only the most common quantities are defined, you can always use the Console Mode
syntax strings in the respective methods as an alternative (for example: “NPM(*)”).

classmethod activity_of_component(component: str, use_ser: bool = False)→ ActivityOfComponent
Creates a quantity representing the activity of a component.

Parameters
• component – The name of the component, use ALL_COMPONENTS to choose all com-

ponents

• use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is be
used if this setting is set to False.

Returns
A new ActivityOfComponent object.

classmethod chemical_diffusion_coefficient(phase: str, diffusing_element: str, gradient_element:
str, reference_element: str)→
ChemicalDiffusionCoefficient

Creates a quantity representing the chemical diffusion coefficient of a phase [m^2/s].

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

• gradient_element – The gradient element

• reference_element – The reference element (for example “Fe” in a steel)

Returns
A new ChemicalDiffusionCoefficient object.

classmethod chemical_potential_of_component(component: str, use_ser: bool = False)→
ChemicalPotentialOfComponent

Creates a quantity representing the chemical potential of a component [J].

Parameters
• component – The name of the component, use ALL_COMPONENTS to choose all com-

ponents

• use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is used
if this setting is set to False.

Returns
A new ChemicalPotentialOfComponent object.

classmethod distance(region: str = 'All')→ Distance
Creates a quantity representing the distance [m].
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Parameters
region – The name of the region or All to choose global.

classmethod intrinsic_diffusion_coefficient(phase: str, diffusing_element: str, gradient_element:
str, reference_element: str)→
IntrinsicDiffusionCoefficient

Creates a quantity representing the intrinsic diffusion coefficient of a phase [m^2/s].

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

• gradient_element – The gradient element

• reference_element – The reference element (for example “Fe” in a steel)

Returns
A new IntrinsicDiffusionCoefficient object.

classmethod l_bis(phase: str, diffusing_element: str, gradient_element: str, reference_element: str)→
Lbis

Creates a quantity representing L” of a phase [m^2/s].

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

• gradient_element – The gradient element

• reference_element – The reference element (for example “Fe” in a steel)

Returns
A new Lbis object.

classmethod mass_fraction_of_a_component(component: str)→ MassFractionOfAComponent
Creates a quantity representing the mass fraction of a component.

Parameters
component – The name of the component or ALL_COMPONENTS to choose all components

Returns
A new MassFractionOfAComponent object.

classmethod mass_fraction_of_a_phase(phase: str)→ MassFractionOfAPhase
Creates a quantity representing the mass fraction of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases.

Returns
A new MassFractionOfAPhase object.

classmethod mobility_of_component_in_phase(phase: str, component: str)→
MobilityOfComponentInPhase

Creates a quantity representing the mobility of a component in a phase [m^2/Js].

Parameters
• phase – The name of the phase

• component – The name of the component
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Returns
A new MobilityOfComponentInPhase object.

classmethod mole_fraction_of_a_component(component: str)→ MoleFractionOfAComponent
Creates a quantity representing the mole fraction of a component.

Parameters
component – The name of the component or ALL_COMPONENTS to choose all components

Returns
A new MoleFractionOfAComponent object.

classmethod mole_fraction_of_a_phase(phase: str)→ MoleFractionOfAPhase
Creates a quantity representing the mole fraction of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new MoleFractionOfAPhase object.

classmethod position_of_lower_boundary_of_region(region: str)→
PositionOfLowerBoundaryOfRegion

Creates a quantity representing the position of lower boundary of a region [m].

Parameters
region – The name of the region

Returns
A new PositionOfLowerBoundaryOfRegion object.

classmethod position_of_upper_boundary_of_region(region: str)→
PositionOfUpperBoundaryOfRegion

Creates a quantity representing the position of upper boundary of a region [m].

Parameters
region – The name of the region

Returns
A new PositionOfUpperBoundaryOfRegion object.

classmethod temperature()→ Temperature
Creates a quantity representing the temperature [K].

Returns
A new Temperature object.

classmethod thermodynamic_factor(phase: str, diffusing_element: str, gradient_element: str,
reference_element: str)→ ThermoDynamicFactor

Creates a quantity representing thermodynamic factor of a phase.

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

• gradient_element – The gradient element

• reference_element – The reference element (for example “Fe” in a steel)

Returns
A new ThermoDynamicFactor object.

6.5. Module “quantity_factory” 327



TC-Python Documentation, Release 2025b

classmethod time()→ Time
Creates a quantity representing the time [s].

classmethod total_mass_fraction_of_component(component: str)→
TotalMassFractionOfComponent

Creates a quantity representing the total mass fraction of a component.

Parameters
component – The name of the component

Returns
A new TotalMassFractionOfComponent object.

classmethod total_mass_fraction_of_component_in_phase(phase: str, component: str)→
TotalMassFractionOfComponentInPhase

Creates a quantity representing the total mass fraction of a component in a phase.

Parameters
• phase – The name of the phase

• component – The name of the component

Returns
A new TotalMassFractionOfComponentInPhase object.

classmethod total_mass_fraction_of_phase(phase: str)→ TotalMassFractionOfPhase
Creates a quantity representing the total mass fraction of a phase.

Parameters
phase – The name of the phase.

Returns
A new TotalMassFractionOfPhase object.

classmethod total_mole_fraction_of_component(component: str)→
TotalMoleFractionOfComponent

Creates a quantity representing the total mole fraction of a component.

Parameters
component – The name of the component

Returns
A new TotalMoleFractionOfComponent object.

classmethod total_mole_fraction_of_component_in_phase(phase: str, component: str)→
TotalMoleFractionOfComponentInPhase

Creates a quantity representing the total mole fraction of a component in a phase.

Parameters
• phase – The name of the phase

• component – The name of the component

Returns
A new TotalMoleFractionOfComponentInPhase object.

classmethod total_volume_fraction_of_phase(phase: str)→ TotalVolumeFractionOfPhase
Creates a quantity representing the total volume fraction of a phase.

Parameters
phase – The name of the phase.
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Returns
A new TotalVolumeFractionOfPhase object.

classmethod tracer_diffusion_coefficient(phase: str, diffusing_element: str)→
TracerDiffusionCoefficient

Creates a quantity representing tracer diffusion coefficient of a phase [m^2/s].

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

Returns
A new TracerDiffusionCoefficient object.

classmethod u_fraction_of_a_component(component: str)→ UFractionOfAComponent
Creates a quantity representing the u-fraction of a component.

Parameters
component – The name of the component

Returns
A new UFractionOfAComponent object.

classmethod user_defined_function(expression: str)→ Function
Creates a quantity representing a user-defined function.

Parameters
expression – The function expression

Returns
A new Function object

classmethod velocity_of_lower_boundary_of_region(region: str)→
VelocityOfLowerBoundaryOfRegion

Creates a quantity representing the velocity of lower boundary of a region [m/s].

Parameters
region – The name of the region

Returns
A new VelocityOfLowerBoundaryOfRegion object.

classmethod velocity_of_upper_boundary_of_region(region: str)→
VelocityOfUpperBoundaryOfRegion

Creates a quantity representing the velocity of upper boundary of a region [m/s].

Parameters
region – The name of the region

Returns
A new VelocityOfUpperBoundaryOfRegion object.

classmethod width_of_region(region: str)→ Function
Creates a quantity representing the width of a region [m].

Parameters
region – The name of the region

Returns
A new WidthOfRegion object.
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class tc_python.quantity_factory.IndependentVariable

Bases: AbstractQuantity

Factory class providing quantities used for defining the independent variable in general diffusion result querying.

classmethod distance(region: str = 'All')→ Distance
Creates an independent variable representing the distance [m].

Returns
A new Distance object

classmethod time()→ Time
Creates an independent variable representing the time [s].

Returns
A new Time object

class tc_python.quantity_factory.PlotCondition

Bases: AbstractQuantity

Factory class providing quantities used for defining the plot condition in general diffusion result querying.

Note: In this factory class only the most common quantities are defined, you can always use the Console Mode
syntax strings in the respective methods as an alternative (for example: “time last”).

classmethod distance(distancepoint: float, region: str = 'All')→ DistanceCondition
Creates a plot condition representing the distance [m].

Change in version 2019b: Mandatory parameter distancepoint added

Parameters
• distancepoint – The distance from the lower interface of the region

• region – The name of the region or All to choose global.

Returns
A new DistanceCondition object

classmethod integral()→ IntegralCondition
Creates an integral plot condition.

Returns
A new IntegralCondition object

classmethod interface(region: str, interface_position: InterfacePosition)→ InterfaceCondition
Creates a plot condition representing an interface between two regions.

Parameters
• region – The name of the region used for defining the interface

• interface_position – The position of the interface relative to that region (lower or
upper)

Returns
A new InterfaceCondition object
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classmethod time(timepoint: Union[float, str] = 'Last')→ TimeCondition
Creates a plot condition representing the time [s].

Change in version 2019b: Lists of timepoints are no longer supported

Parameters
timepoint – The timepoint. Optionally “Last” can be used for the end of the simulation

Returns
A new TimeCondition object

class tc_python.quantity_factory.ScheilQuantity

Bases: AbstractQuantity

Factory class providing quantities used for defining a Scheil calculation result (tc_python.scheil.
ScheilCalculationResult).

classmethod apparent_heat_capacity_per_gram()→ ApparentHeatCapacityPerGram
Creates a quantity representing the apparent heat capacity [J/g/K].

Returns
A new ApparentHeatCapacityPerGram object.

classmethod apparent_heat_capacity_per_mole()→ ApparentHeatCapacityPerMole
Creates a quantity representing the apparent heat capacity [J/mol/K].

Returns
A new ApparentHeatCapacityPerMole object.

classmethod apparent_volumetric_thermal_expansion_coefficient()→
ApparentVolumetricThermalExpansionCoefficient

Creates a quantity representing the apparent volumetric thermal expansion coefficient of the system [1/K].

Returns
A new ApparentVolumetricThermalExpansionCoefficient object.

classmethod average_composition_of_solid_phases_as_mass_fraction(component: str)→
AverageCompositionOfSolidPhasesAsMassFraction

Creates a quantity representing the average composition of solid phases [mass fraction] at the current Scheil
step.

Parameters
component – The name of the component, use ALL_COMPONENTS to choose all compo-
nents

Returns
A new AverageCompositionOFSolidPhasesAsMassFraction object.

classmethod average_composition_of_solid_phases_as_mole_fraction(component: str)→
AverageCompositionOfSolidPhasesAsMoleFraction

Creates a quantity representing the average composition of solid phases [mole fraction] at the current Scheil
step.

Parameters
component – The name of the component, use ALL_COMPONENTS to choose all compo-
nents

Returns
A new AverageCompositionOFSolidPhasesAsMoleFraction object.
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classmethod composition_of_phase_as_mole_fraction(phase: str, component: str)→
CompositionOfPhaseAsMoleFraction

Creates a quantity representing the composition of a phase [mole-fraction].

Parameters
• phase – The name of the phase, use ALL_PHASES to choose all stable phases

• component – The name of the component, use ALL_COMPONENTS to choose all com-
ponents

Returns
A new CompositionOfPhaseAsMoleFraction object.

classmethod composition_of_phase_as_weight_fraction(phase: str, component: str)→
CompositionOfPhaseAsWeightFraction

Creates a quantity representing the composition of a phase [weight-fraction].

Parameters
• phase – The name of the phase, use ALL_PHASES to choose all stable phases

• component – The name of the component, use ALL_COMPONENTS to choose all com-
ponents

Returns
A new CompositionOfPhaseAsWeightFraction object.

classmethod density_of_phase(phase: str)→ DensityOfPhase
Creates a quantity representing the average density of a phase [g/cm^3].

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new DensityOfPhase object.

classmethod density_of_system()→ DensityOfSystem
Creates a quantity representing the average density of the system [g/cm^3].

Returns
A new DensityOfSystem object.

classmethod distribution_of_component_of_phase(phase: str, component: str)→
DistributionOfComponentOfPhase

Creates a quantity representing the (molar) fraction of the specified component being present in the specified
phase compared to the overall system [-]. This corresponds to the degree of segregation to that phase.

Parameters
• phase – The name of the phase

• component – The name of the component

Returns
A new DistributionOfComponentOfPhase object.

classmethod driving_force_for_evaporation()→ DrivingForceForEvaporation
Creates a quantity representing the driving force for evaporation

Returns
A new DrivingForceForEvaporation object.
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classmethod dynamic_viscosity(phase: str)→ DynamicViscosity
Creates a quantity representing the dynamic viscosity of a liquid phase.

Parameters
phase – The name of the liquid phase

Returns
A new DynamicViscosity object.

classmethod electric_conductivity(interface_scattering_constant=4e-08)→
ScheilElectricConductivity

Creates a quantity representing electric conductivity.

Parameters
interface_scattering_constant – A constant describing the magnitude of the effect of
phase interface scattering [ohm * m]. Omitting it or giving a zero value means phase interface
scattering is not considered.

Returns
A new ScheilElectricConductivity object.

classmethod electric_conductivity_of_phase(phase: str)→ ElectricConductivityOfPhase
Creates a quantity representing the electric conductivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ElectricConductivityOfPhase object.

classmethod electric_resistivity(interface_scattering_constant=4e-08)→ ScheilElectricResistivity
Creates a quantity representing electric resistivity.

Parameters
interface_scattering_constant – A constant describing the magnitude of the effect of
phase interface scattering [ohm * m]. Omitting it or giving a zero value means phase interface
scattering is not considered.

Returns
A new ScheilElectricResistivity object.

classmethod electric_resistivity_of_phase(phase: str)→ ElectricResistivityOfPhase
Creates a quantity representing the electric resistivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ElectricResistivityOfPhase object.

classmethod evaporation_enthalpy()→ EvaporationEnthalpy
Creates a quantity representing the evaporation enthalpy.

Returns
A new EvaporationEnthalpy object.

classmethod heat_per_gram()→ HeatPerGram
Creates a quantity representing the total heat release from the liquidus temperature down to the current
temperature [J/g].
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Note: The total or apparent heat release during the solidification process consists of two parts: one is the
so-called latent heat, i.e. heat due to the liquid -> solid phase transformation (latent_heat_per_mole()
and latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid
phases (heat_per_mole() and heat_per_gram()).

Returns
A new HeatPerGram object.

classmethod heat_per_mole()→ HeatPerMole
Creates a quantity representing the total heat release from the liquidus temperature down to the current
temperature [J/mol].

Note: The total or apparent heat release during the solidification process consists of two parts: one is the
so-called latent heat, i.e. heat due to the liquid -> solid phase transformation (latent_heat_per_mole()
and latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid
phases (heat_per_mole() and heat_per_gram()).

Returns
A new HeatPerMole object.

classmethod kinematic_viscosity(phase: str)→ KinematicViscosity
Creates a quantity representing the kinematic viscosity of a liquid phase.

Parameters
phase – The name of the liquid phase

Returns
A new KinematicViscosity object.

classmethod latent_heat_per_gram()→ LatentHeatPerGram
Creates a quantity representing the cumulated latent heat release from the liquidus temperature down to the
current temperature [J/g].

Note: The total or apparent heat release during the solidification process consists of two parts: one is the
so-called latent heat, i.e. heat due to the liquid -> solid phase transformation (latent_heat_per_mole()
and latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid
phases (heat_per_mole() and heat_per_gram()).

Returns
A new LatentHeatPerGram object.

classmethod latent_heat_per_mole()→ LatentHeatPerMole
Creates a quantity representing the cumulated latent heat release from the liquidus temperature down to the
current temperature [J/mol].

Note: The total or apparent heat release during the solidification process consists of two parts: one is the
so-called latent heat, i.e. heat due to the liquid -> solid phase transformation (latent_heat_per_mole()
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and latent_heat_per_gram()), and the other is the heat related to the specific heat of liquid and solid
phases (heat_per_mole() and heat_per_gram()).

Returns
A new LatentHeatPerMole object.

classmethod mass_fraction_of_a_solid_phase(phase: str)→ MassFractionOfASolidPhase
Creates a quantity representing the mass fraction of a solid phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all solid phases

Returns
A new MassFractionOfASolidPhase object.

classmethod mass_fraction_of_all_liquid()→ MassFractionOfAllLiquid
Creates a quantity representing the total mass fraction of all the liquid phase.

Returns
A new MassFractionOfAllLiquid object.

classmethod mass_fraction_of_all_solid_phases()→ MassFractionOfAllSolidPhase
Creates a quantity representing the total mass fraction of all solid phases.

Returns
A new MassFractionOfAllSolidPhase object.

classmethod molar_mass_of_gas()→ MolarMassOfGas
Creates a quantity representing the molar mass of gas

Returns
A new MolarMassOfGas object.

classmethod molar_volume_of_phase(phase: str)→ MolarVolumeOfPhase
Creates a quantity representing the molar volume of a phase [m^3/mol].

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new MolarVolumeOfPhase object.

classmethod molar_volume_of_system()→ MolarVolumeOfSystem
Creates a quantity representing the molar volume of the system [m^3/mol].

Returns
A new MolarVolumeOfSystem object.

classmethod mole_fraction_of_a_solid_phase(phase: str)→ MoleFractionOfASolidPhase
Creates a quantity representing the molar fraction of a solid phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all solid phases

Returns
A new MoleFractionOfASolidPhase object.
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classmethod mole_fraction_of_all_liquid()→ MoleFractionOfAllLiquid
Creates a quantity representing the total molar fraction of all the liquid phase.

Returns
A new MoleFractionOfAllLiquid object.

classmethod mole_fraction_of_all_solid_phases()→ MoleFractionOfAllSolidPhases
Creates a quantity representing the total molar fraction of all solid phases.

Returns
A new MoleFractionOfAllSolidPhases object.

classmethod site_fraction_of_component_in_phase(phase: str, component: str,
sub_lattice_ordinal_no: int = 0)→
SiteFractionOfComponentInPhase

Creates a quantity representing the site fractions [-].

Parameters
• phase – The name of the phase, use ALL_PHASES to choose all stable phases

• component – The name of the component, use ALL_COMPONENTS to choose all com-
ponents

• sub_lattice_ordinal_no – The ordinal number (i.e. 1, 2, . . . ) of the sublattice of
interest, use None to choose all sublattices

Note: Detailed information about the sublattices can be obtained by getting the Phase object of a phase
from the System object using tc_python.system.System.get_phase_in_system. For each phase the
sublattices are obtained by using tc_python.system.Phase.get_sublattices. The order in the re-
turned list is equivalent to the sublattice ordinal number expected, but note that the ordinal numbers
start with 1.

Returns
A new SiteFractionOfComponentInPhase object.

classmethod surface_tension(phase: str)→ SurfaceTension
Creates a quantity representing the surface tension of a liquid phase.

Parameters
phase – The name of the liquid phase

Returns
A new SurfaceTension object.

classmethod temperature()→ Temperature
Creates a quantity representing the temperature [K].

Returns
A new Temperature object.

classmethod thermal_conductivity(interface_scattering_constant=4e-08)→
ScheilThermalConductivity

Creates a quantity representing thermal conductivity.

Parameters
interface_scattering_constant – A constant describing the magnitude of the effect of
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phase interface scattering [ohm * m]. Omitting it or giving a zero value means phase interface
scattering is not considered.

Returns
A new ScheilThermalConductivity object.

classmethod thermal_conductivity_of_phase(phase: str)→ ThermalConductivityOfPhase
Creates a quantity representing the thermal conductivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ThermalConductivityOfPhase object.

classmethod thermal_diffusivity(interface_scattering_constant=4e-08)→ ScheilThermalDiffusivity
Creates a quantity representing thermal diffusivity.

Parameters
interface_scattering_constant – A constant describing the magnitude of the effect of
phase interface scattering [ohm * m]. Omitting it or giving a zero value means phase interface
scattering is not considered.

Returns
A new ScheilThermalDiffusivity object.

classmethod thermal_diffusivity_of_phase(phase: str)→ ThermalDiffusivityOfPhase
Creates a quantity representing the thermal diffusivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ThermalDiffusivityOfPhase object.

classmethod thermal_resistivity(interface_scattering_constant=4e-08)→ ScheilThermalResistivity
Creates a quantity representing thermal resistivity.

Parameters
interface_scattering_constant – A constant describing the magnitude of the effect of
phase interface scattering [ohm * m]. Omitting it or giving a zero value means phase interface
scattering is not considered.

Returns
A new ScheilThermalResistivity object.

classmethod thermal_resistivity_of_phase(phase: str)→ ThermalResistivityOfPhase
Creates a quantity representing the thermal resistivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ThermalResistivityOfPhase object.

classmethod volume_fraction_of_a_solid_phase(phase: str)→ VolumeFractionOfASolidPhase
Creates a quantity representing the volume fraction of a solid phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all solid phases
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Returns
A new VolumeFractionOfASolidPhase object.

classmethod volume_fraction_of_all_liquid()→ VolumeFractionOfAllLiquid
Creates a quantity representing the total volume fraction of all the liquid phase.

Returns
A new VolumeFractionOfAllLiquid object.

classmethod volume_fraction_of_all_solid_phases()→ VolumeFractionOfAllSolidPhases
Creates a quantity representing the total volume fraction of all solid phases.

Returns
A new VolumeFractionOfAllSolidPhases object.

class tc_python.quantity_factory.ThermodynamicQuantity

Bases: AbstractQuantity

Factory class providing quantities used for defining equilibrium calculations (single equilibrium, property and
phase diagrams, . . . ) and their results.

Note: In this factory class only the most common quantities are defined, you can always use the Console Mode
syntax strings in the respective methods as an alternative (for example: “NPM(*)”).

classmethod activity_of_component(component: str, use_ser: bool = False)→ ActivityOfComponent
Creates a quantity representing the activity of a component [-].

Parameters
• component – The name of the component, use ALL_COMPONENTS to choose all com-

ponents

• use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is used
if this setting is set to False.

Returns
A new ActivityOfComponent object.

classmethod bulk_modulus(phase: str)→ BulkModulus
Creates a quantity representing the bulk modulus of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new BulkModulus object.

classmethod chemical_diffusion_coefficient(phase: str, diffusing_element: str, gradient_element:
str, reference_element: str)→
ChemicalDiffusionCoefficient

Creates a quantity representing the chemical diffusion coefficient of a phase [m^2/s].

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

• gradient_element – The gradient element

• reference_element – The reference element (for example “Fe” in a steel)
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Returns
A new ChemicalDiffusionCoefficient object.

classmethod chemical_potential_of_component(component: str, use_ser: bool = False)→
ChemicalPotentialOfComponent

Creates a quantity representing the chemical potential of a component [J].

Parameters
• component – The name of the component, use ALL_COMPONENTS to choose all com-

ponents

• use_ser – Use Stable-Element-Reference(SER). The user-defined reference state is used
if this setting is set to False.

Returns
A new ChemicalPotentialOfComponent object.

classmethod composition_of_phase_as_mole_fraction(phase: str, component: str = 'All')→
CompositionOfPhaseAsMoleFraction

Creates a quantity representing the composition of a phase [mole-fraction].

Parameters
• phase – The name of the phase, use ALL_PHASES to choose all stable phases

• component – The name of the component, use ALL_COMPONENTS to choose all com-
ponents

Returns
A new CompositionOfPhaseAsMoleFraction object.

classmethod composition_of_phase_as_weight_fraction(phase: str, component: str)→
CompositionOfPhaseAsWeightFraction

Creates a quantity representing the composition of a phase [weight-fraction].

Parameters
• phase – The name of the phase, use ALL_PHASES to choose all stable phases

• component – The name of the component, use ALL_COMPONENTS to choose all com-
ponents

Returns
A new CompositionOfPhaseAsWeightFraction object.

classmethod dynamic_viscosity(phase: str)→ DynamicViscosity
Creates a quantity representing the dynamic viscosity of a liquid phase.

Parameters
phase – The name of the liquid phase

Returns
A new DynamicViscosity object.

classmethod electric_conductivity()→ ElectricConductivity
Creates a quantity representing electric conductivity.

Returns
A new ElectricConductivity object.
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classmethod electric_conductivity_of_phase(phase: str)→ ElectricConductivityOfPhase
Creates a quantity representing the electric conductivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ElectricConductivityOfPhase object.

classmethod electric_resistivity()→ ElectricResistivity
Creates a quantity representing electric resistivity.

Returns
A new ElectricResistivity object.

classmethod electric_resistivity_of_phase(phase: str)→ ElectricResistivityOfPhase
Creates a quantity representing the electric resistivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ElectricResistivityOfPhase object.

classmethod gibbs_energy_of_a_phase(phase: str, use_ser: bool = False)→ GibbsEnergyOfAPhase
Creates a quantity representing the Gibbs energy of a phase [J].

Parameters
• phase – The name of the phase or ALL_PHASES to choose all phases

• use_ser – Use Stable-Element-Reference(SER). The user-defined reference state will be
used when this setting is set to False.

Returns
A new GibbsEnergyOfAPhase object.

classmethod kinematic_viscosity(phase: str)→ KinematicViscosity
Creates a quantity representing the kinematic viscosity of a liquid phase.

Parameters
phase – The name of the liquid phase

Returns
A new KinematicViscosity object.

classmethod mass_fraction_of_a_component(component: str)→ MassFractionOfAComponent
Creates a quantity representing the mass fraction of a component.

Parameters
component – The name of the component or ALL_COMPONENTS to choose all components

Returns
A new MassFractionOfAComponent object.

classmethod mass_fraction_of_a_phase(phase: str)→ MassFractionOfAPhase
Creates a quantity representing the mass fraction of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases.

Returns
A new MassFractionOfAPhase object.
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classmethod molar_volume_of_phase(phase: str)→ MolarVolumeOfPhase
Creates a quantity representing the molar volume of a phase [m^3/mol].

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new MolarVolumeOfPhase object.

classmethod molar_volume_of_system()→ MolarVolumeOfSystem
Creates a quantity representing the molar volume of the system [m^3/mol].

Returns
A new MolarVolumeOfSystem object.

classmethod mole_fraction_of_a_component(component: str)→ MoleFractionOfAComponent
Creates a quantity representing the mole fraction of a component.

Parameters
component – The name of the component or ALL_COMPONENTS to choose all components

Returns
A new MoleFractionOfAComponent object.

classmethod mole_fraction_of_a_phase(phase: str)→ MoleFractionOfAPhase
Creates a quantity representing the mole fraction of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new MoleFractionOfAPhase object.

classmethod normalized_driving_force_of_a_phase(phase: str)→
NormalizedDrivingForceOfAPhase

Creates a quantity representing normalized driving force of a phase [-].

Warning: A driving force calculation requires that the respective phase has been set to the state
DORMANT. The parameter All is only reasonable if all phases have been set to that state.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new DrivingForceOfAPhase object.

classmethod pressure()→ Pressure
Creates a quantity representing the pressure [Pa].

Returns
A new Pressure object.

classmethod shear_modulus(phase: str)→ ShearModulus
Creates a quantity representing the shear modulus of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases
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Returns
A new ShearModulus object.

classmethod surface_tension(phase: str)→ SurfaceTension
Creates a quantity representing the surface tension of a liquid phase.

Parameters
phase – The name of the liquid phase

Returns
A new SurfaceTension object.

classmethod system_size()→ SystemSize
Creates a quantity representing the system size [mol].

Returns
A new SystemSize object.

classmethod temperature()→ Temperature
Creates a quantity representing the temperature [K].

Returns
A new Temperature object.

classmethod thermal_conductivity()→ ThermalConductivity
Creates a quantity representing thermal conductivity.

Returns
A new ThermalConductivity object.

classmethod thermal_conductivity_of_phase(phase: str)→ ThermalConductivityOfPhase
Creates a quantity representing the thermal conductivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ThermalConductivityOfPhase object.

classmethod thermal_diffusivity()→ ThermalDiffusivity
Creates a quantity representing thermal diffusivity.

Returns
A new ThermalDiffusivity object.

classmethod thermal_diffusivity_of_phase(phase: str)→ ThermalDiffusivityOfPhase
Creates a quantity representing the thermal diffusivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ThermalDiffusivityOfPhase object.

classmethod thermal_resistivity()→ ThermalResistivity
Creates a quantity representing thermal resistivity.

Returns
A new ThermalResistivity object.

342 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

classmethod thermal_resistivity_of_phase(phase: str)→ ThermalResistivityOfPhase
Creates a quantity representing the thermal resistivity of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new ThermalResistivityOfPhase object.

classmethod tracer_diffusion_coefficient(phase: str, diffusing_element: str)→
TracerDiffusionCoefficient

Creates a quantity representing tracer diffusion coefficient of a phase [m^2/s].

Parameters
• phase – The name of the phase

• diffusing_element – The diffusing element

Returns
A new TracerDiffusionCoefficient object.

classmethod u_fraction_of_a_component(component: str)→ UFractionOfAComponent
Creates a quantity representing the u-fraction of a component.

Parameters
component – The name of the component

Returns
A new UFractionOfAComponent object.

classmethod user_defined_function(expression: str)→ Function
Creates a quantity representing a user-defined function.

Parameters
expression – The function expression

Returns
A new Function object

classmethod volume_fraction_of_a_phase(phase: str)→ VolumeFractionOfAPhase
Creates a quantity representing the volume fraction of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new VolumeFractionOfAPhase object.

classmethod youngs_modulus(phase: str)→ YoungsModulus
Creates a quantity representing the Young’s modulus of a phase.

Parameters
phase – The name of the phase or ALL_PHASES to choose all phases

Returns
A new YoungsModulus object.
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6.6 Module “utils”

class tc_python.utils.CompositionType(value)
Bases: Enum

The type of composition.

COMPONENT = 1

Composition given per component, this will be identical to ELEMENT in case of metals.

ELEMENT = 0

Composition given per element.

class tc_python.utils.CompositionUnit(value)
Bases: Enum

The composition unit.

MASS_FRACTION = 1

Mass fraction.

MASS_PERCENT = 0

Mass percent.

MOLE_FRACTION = 3

Mole fraction.

MOLE_PERCENT = 2

Mole percent.

class tc_python.utils.ConversionUnit(value)
Bases: Enum

The composition unit used in a conversion.

MOLE_FRACTION = 0

Mole fraction.

MOLE_PERCENT = 1

Mole percent.

WEIGHT_FRACTION = 2

Weight fraction.

WEIGHT_PERCENT = 3

Weight percent.

class tc_python.utils.GasAmountUnit(value)
Bases: Enum

The amount of a gas.

KILOGRAM = 1

Kilogram.

NORM_CUBIC_METER = 0

Norm cubic meter (according to ISO 2533, p=101325 Pa, T=288.15 K, typically used for trading of gas
bottles). Other definitions vary only slightly.
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class tc_python.utils.GasCompositionUnit(value)
Bases: Enum

The composition unit for a gas.

MASS_FRACTION = 1

Mass fraction.

MASS_PERCENT = 0

Mass percent.

MOLE_FRACTION = 3

Mole fraction.

MOLE_PERCENT = 2

Mole percent.

VOLUME_FRACTION = 5

Volume fraction.

VOLUME_PERCENT = 4

Volume percent.

class tc_python.utils.GasRateUnit(value)
Bases: Enum

The rate of a gas flow.

KILOGRAM_PER_SEC = 1

Kilogram per second.

NORM_CUBIC_METER_PER_SEC = 0

Norm cubic meter per second (according to ISO 2533, p=101325 Pa, T=288.15 K, typically used for trading
of gas bottles). Other definitions vary only slightly.

class tc_python.utils.InterfacePosition(value)
Bases: Enum

The position of an interface relative to its region. Only used for diffusion simulations.

LOWER = 0

The interface is on the lower side of its region.

UPPER = 1

The interface is on the upper side of its region.

class tc_python.utils.PhaseUnit(value)
Bases: Enum

The units available for a phase fraction.

MASS_FRACTION = 1

Mass fraction.

MOLE_FRACTION = 0

Mole fraction.

VOLUME_FRACTION = 2

Volume fraction.
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class tc_python.utils.ResultValueGroup(result_line_group_java)
Bases: object

A x-y-dataset representing a line data calculation result (i.e. a Thermo-Calc quantity 1 vs. quantity 2).

Warning: Depending on the calculator, the dataset might contain NaN-values to separate the data between
different subsets.

Variables
• label – a str describing what the data corresponds to

• x – list of floats representing the first quantity (“x-axis”)

• y – list of floats representing the second quantity (“y-axis”)

get_label()→ str
Accessor for the line label :return the line label

get_x()→ List[float]
Accessor for the x-values :return the x values

get_y()→ List[float]
Accessor for the y-values :return the y values

class tc_python.utils.TemperatureProfile

Bases: object

Represents a time-temperature profile used by non-isothermal calculations.

Note: The total simulation time can differ from the defined temperature profile. Constant temperature is assumed
for any timepoint after the end of the defined profile.

add_time_temperature(time: float, temperature: float)
Adds a time-temperature point to the non-isothermal temperature profile.

Parameters
• time – The time [s]

• temperature – The temperature [K]

Returns
This TemperatureProfile object

6.7 Module “propertymodel_sdk”

class tc_python.propertymodel_sdk.AddPrefixToWarning(name='')
Bases: Filter

filter(record)
Determine if the specified record is to be logged.

Returns True if the record should be logged, or False otherwise. If deemed appropriate, the record may be
modified in-place.
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class tc_python.propertymodel_sdk.CCTResult(quantity_id: str, description: str)
Bases: ResultQuantity

Represents a Continuous Cooling (CCT) result.

Parameters
• quantity_id – The id of this result

• description – The description of this result

add_time_temperature(time_temperature_id: str, description: str)
Adds a time-temperature pair to the result.

Parameters
• time_temperature_id – The id of the time-temperature pair

• description – The description of the time-temperature pair

temperature_suffix = ' (T)'

The temperature suffix of a CCTResult

time_suffix = ' (t)'

The time suffix of a CCTResult

class tc_python.propertymodel_sdk.CCTResultValues(cooling_rate: float = -1.0,
cooling_rate_start_temperature: float = -1.0,
cooling_rate_end_temperature: float = -1.0)

Bases: object

Represents Continuous Cooling (CCT) result values.

Parameters
• cooling_rate – The cooling rate [K/s]

• cooling_rate_start_temperature – The start temperature of cooling [K]

• cooling_rate_end_temperature – The end temperature of cooling [K]

set_result_time_temperature(time_temperature_id: str, time: float, temperature: float)
Sets a time-temperature pair of the result.

Parameters
• time_temperature_id – The id of the time-temperature pair

• time – The time [s]

• temperature – The temperature [K]

class tc_python.propertymodel_sdk.CalculationContext(system: System, model_utils=None)
Bases: object

Represents the interface of the Property Model with the Thermo-Calc application and the rest of the TC-Python
functionality.

Parameters
• system – The system object of this calculation

• model_utils – The model utils object
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get_argument_ids()→ Set[str]
Returns a list with the arguments of the models. Including arguments created from dynamic parameters.

get_dependent_component()→ str
Obtains the dependent component from the UI

Note: The dependent component is that which has no composition specified explicitly, typically this is the
major element of the material (such as Fe, Al, Ni, . . . )

Returns
The dependent component

get_element_names_in_camel_case()

Obtains the elements in the system. The dependent component is not included.

Returns
A list of the elements in the system, each written in camel case.

get_mass_fractions()→ Dict[str, float]
Obtains the current composition from the UI as mass-fraction.

Note: In case of stepping over one or multiple axis, the returned data will represent the composition at the
current step.

Returns
The composition (key: component, value: content) [mass-fraction]

get_mass_percents()→ Dict[str, float]
Obtains the current composition from the UI in mass-percent.

Note: In case of stepping over one or multiple axis, the returned data will represent the composition at the
current step.

Returns
The composition (key: component, value: content) [mass-percent]

get_model_path()→ str
Obtains the current path to the Property Models folder defined by the user.

Returns
The absolute path to the Property Models folder defined by the user.

get_mole_fractions()→ Dict[str, float]
Obtains the current composition from the UI as mole-fraction.

Note: In case of stepping over one or multiple axis, the returned data will represent the composition at the
current step.
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Returns
The composition (key: component, value: content) [mole-fraction]

get_mole_percents()→ Dict[str, float]
Obtains the current composition from the UI in mole-percent.

Note: In case of stepping over one or multiple axis, the returned data will represent the composition at the
current step.

Returns
The composition (key: component, value: content) [mole-percent]

get_temperature()→ float
Obtains the current temperature from the UI.

Returns
The temperature [K]

get_ui_boolean_value(component_id: str)→ bool
Obtains the value from the specified checkbox UI component.

Parameters
component_id – Id of the checkbox

Returns
The setting of the checkbox

get_ui_condition_list(component_id: str)→ ConditionListEntry
Used to get the selected condition from components of type UIConditionListComponent :param compo-
nent_id: Id of the list UI component :return: The selected condition

get_ui_float_value(component_id: str)→ float
Obtains the value from the specified UI component.

Parameters
component_id – Id of the UI component

Returns
The value

get_ui_list_value(component_id: str)→ str
Obtains the selected entry from a UI component list. If a special element (such as ANY, NONE, . . . ) is
selected, the corresponding locale-independent placeholder is provided.

Parameters
component_id – Id of the list UI component

Returns
The selected entry

get_ui_string_value(component_id: str)→ str
Obtains the selected entry from a UI component text field.

Parameters
component_id – Id of the string UI component

Returns
The selected entry
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get_ui_temperature_value(component_id: str)→ float
Obtains the temperature from the specified temperature UI component.

Parameters
component_id – Id of the temperature UI component

Returns
The temperature [K], note that input unit of the UI is specified in the model panel. If required,
the temperature is automatically converted to K.

set_result_cct_values(quantity_id: str, r: CCTResultValues)
Sets the value of a previously defined result quantity (of type CCTResultValues) for further usage in the
Thermo-Calc application for plotting, etc.

Parameters
• quantity_id – unique id of the result quantity

• r – the CCTResultValues to be set

set_result_quantity_value(quantity_id: str, value: float, parameter: str = '')
Sets the value of a previously defined result quantity for further usage in the Thermo-Calc application for
plotting, etc.

Note: Any result quantity that remains unset is automatically set to NaN.

Parameters
• quantity_id – Unique id of the result quantity

• parameter – Use if result is parameterized. f.i. “per phase”

• value – The value to be set

set_single_equilibrium_result(quantity_id: str, r: SingleEquilibriumResult)

class tc_python.propertymodel_sdk.ConditionListEntry

Bases: object

Used in combination with components of type UIConditionListComponent.

Contains the element, if the selected condition is a composition Contains the Console Mode syntax of the selected
condition. Contains the unit of the selected condition

class tc_python.propertymodel_sdk.PropertyModel(_locale: str = 'en-US')
Bases: object

The abstract base class for all property models.

Note: Every Property Model needs to implement most of the abstract methods of this class. However, some
abstract methods are optional and should only be implemented if required.

Note: If overwriting the constructor in a Property Model, the constructor of the implemented class must have
the identical signature and should pass the parameters to this base class constructor.
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Tip: It is possible to switch off internal INFO-log messages coming from the calculation engine by changing
the log-level on the TC-Python log object like this: logging.getLogger(“tc_python”).setLevel(logging.ERROR).

Parameters
_locale – The locale to be used, this is an internal parameter and is of no meaning to the
end-user

Variables
logger – logger object that is connected to the Thermo-Calc UI (INFO- and WARNING-level will
be printed as INFO, ERROR-level as ERROR), it can be accessed like this: self.logger.info(“Some
message”)

abstract add_button_callback(component_id: str, ui_components: Dict[UIComponent, int])→
List[UIComponent]

Implement this method if you have one or more UI components on which you called UIComponent.
enable_add_button(), which adds a + button next to the component.

This method will be executed when you press any such + button.

This method is typically used to add more UI components dynamically and the method must return a list
of the UI components to be added.

This method can optionally be implemented by a Property Model.
Parameters

• component_id – The id of the UI component next to the pressed + button

• ui_components – dict with the components and the index of the current ui components
of the model. Including arguments created in previous calls to add_button_callback.

Returns
A list of UIComponent objects to be added

abstract add_callback(component_id: str, ui_components: Dict[UIComponent, int], old_value,
new_value)

TODO: docstring

abstract after_evaluations()

Called by the Thermo-Calc application immediately after the last model evaluation (using the method
PropertyModel.evaluate_model()). Use this method for any required cleanup.

This method can optionally be implemented by a Property Model.
abstract before_evaluations(context: CalculationContext)

Called by the Thermo-Calc application immediately before the first model evaluation (using the method
PropertyModel.evaluate_model()). Use this method for any required preparations.

This method can optionally be implemented by a Property Model.
Parameters
context – The calculation context

abstract evaluate_model(context: CalculationContext)
Called by the Thermo-Calc application when the model should be actually calculated. This is the main-
method of the Property Model that contains the actual calculation code.
This method needs to be implemented by all property models.
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Parameters
context – The calculation context, this provides access to the Thermo-Calc application and
all other TC-Python modules

abstract get_license_key()→ str
Provides the license key of the model.

This method can optionally be implemented by a Property Model.
abstract provide_calculation_result_quantities()→ List[ResultQuantity]

Called by the Thermo-Calc application when the model should provide its result quantity objects.

This method needs to be implemented by all property models.
Returns

Result quantity objects of the model (to be filled later with results in the method
PropertyModel.evaluate_model())

abstract provide_model_category()→ List[str]
Called by the Thermo-Calc application when the model should provide its category (shown in the Thermo-
Calc model tree).

This method needs to be implemented by all property models.
Returns

Category of the model, it may be present in several categories

abstract provide_model_description()→ str
Called by the Thermo-Calc application when the model should provide its detailed description.

This method needs to be implemented by all property models.
Returns

Description text for the model

abstract provide_model_name()→ str
Called by the Thermo-Calc application when the model should provide its name (shown in the Thermo-Calc
model tree).

This method needs to be implemented by all property models.
Returns

Name of the model

abstract provide_model_parameters()→ Dict[str, float]
Called by the Thermo-Calc application when the model should provide all model parameters and their
current values.

This method can optionally be implemented by a Property Model.

Note: These are internal variables of the Property Model that are intended to be modified from the outside.
Typically this is used to adjust their values in a optimizer during the development of the model.

Returns
The model parameter ids and their current values [unit according to the parameter meaning]
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abstract provide_ui_panel_components()→ List[UIComponent]
Called by the Thermo-Calc application when the model should provide its UI components for the model
panel to be plotted. This happens also whenever a model gets checked in the model tree.

This method needs to be implemented by all property models.
Returns

Model UI panel components in the order to be presented in the model panel

abstract remove_button_callback(component_id: str, ui_components: Dict[UIComponent, int])→
List[str]

Implement this method if you have one or more UI components on which you called UIComponent.
enable_remove_button(), which adds a - button next to the component.

This method will be executed when you press any such - button.

This method is typically used to remove UI components dynamically and the method must return a list of
the ids of the components that are going to be removed.

This method can optionally be implemented by a Property Model.
Parameters

• component_id – the id of the UI component next to the pressed - button

• ui_components – list with the components and the index of the current ui components of
the model. Including arguments created in previous calls to add_button_callback.

Returns
a list of UI component ids that are required to be removed

abstract set_model_parameter(model_parameter_id: str, value: float)
Called by the Thermo-Calc application when a model parameter should be reset.

This method can optionally be implemented by a Property Model.

Note: These are internal variables of the Property Model that are intended to be modified from the outside.
Typically this is used to adjust their values in a optimizer during the development of the model.

Parameters
• model_parameter_id – The parameter id

• value – The value [unit according to the parameter meaning]

class tc_python.propertymodel_sdk.ResultQuantity(quantity_id: str, description: str, quantity_type:
ResultQuantityType)

Bases: object

Defines a calculation result quantity of a Property Model that is identified by a unique id.

Parameters
• quantity_id – Unique id of the quantity

• description – Description of the quantity (shown in the Thermo-Calc UI)

• quantity_type – Type of the quantity (defines the unit)
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get_description()→ str
Obtains the description of the quantity.

Returns
Description of the quantity

get_id()→ str
Obtains the id of the quantity.

Returns
Unique id of the quantity

get_type()→ ResultQuantityType
Obtains the type of quantity.

Returns
Type of the quantity

class tc_python.propertymodel_sdk.ResultQuantityType(value)
Bases: Enum

Defining the type of a result quantity.

CCT_QUANTITY = 5

A cct quantity

ENERGY_QUANTITY = 2

An energy quantity

GENERAL_QUANTITY = 0

A general quantity

LENGTH_QUANTITY = 7

A length in quantity

SINGLE_EQUILIBRIUM_QUANTITY = 6

A cct quantity

SOLIDIFICATION_RATE_QUANTITY = 12

A solidification rate quantity

STRAIN_QUANTITY = 14

A strain quantity

STRENGTH_QUANTITY = 8

A strength quantity

STRESS_QUANTITY = 13

A stress quantity

SURFACE_ENERGY_QUANTITY = 3

A surface energy quantity

TEMPERATURE_QUANTITY = 1

A temperature quantity

THERMAL_GRADIENT_QUANTITY = 11

A thermal gradient quantity
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TIME_QUANTITY = 4

A time quantity

VELOCITY_QUANTITY = 10

A velocity quantity

VICKERS_HARDNESS_QUANTITY = 9

A hardness quantity

class tc_python.propertymodel_sdk.SpecialListMarkers

Bases: object

Placeholders for special list elements that are locale-dependent. They will be provided by UI list components if
a special marker has been selected.

ANY_LIST_MARKER = 'ANY'

Marker that represents “Any”

NONE_LIST_MARKER = 'NONE'

Marker that represents “None”

class tc_python.propertymodel_sdk.UIBooleanComponent(component_id: str, name: str, description: str,
setting: bool)

Bases: UIComponent

Checkbox UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• setting – Initial setting of the checkbox

connect_component_enableability(dependent_component_id: str)
Connects the state enabled of any other UI component of the model panel to the value of this boolean
component.

Parameters
dependent_component_id – Id of the UI element to be dependent on this boolean compo-
nent

connect_component_visibility(dependent_component_id: str)
Connects the visibility of any other UI component of the model panel to the value of this boolean compo-
nent.

Parameters
dependent_component_id – Id of the UI element to be dependent on this boolean compo-
nent

enable_add_button()

Adds a + button to the right of the UI component.

Returns
This UI component
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enable_remove_button()

Adds a - button to the right of the UI component.

Returns
This UI component

get_dependent_components()→ List[str]
Obtains a list containing all UI elements currently connected regarding their visibility.

Returns
A list with the component id of all UI elements currently connected

get_setting()→ bool
Obtains the setting of the checkbox.

Returns
The setting of the checkbox

remove_component_visibility(dependent_component_id: str)
Removes the visibility connection to a UI component that has been previously connected.

Parameters
dependent_component_id – Id of the previously connection UI element

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position

Returns
This UI component

class tc_python.propertymodel_sdk.UIComponent(component_id: str, name: str, description: str)
Bases: object

Abstract Base class for all UI components of the model panel.

Never make an instance of UIComponent, always use the sub-classes. For instance UIStringComponent.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

get_description()→ str
Obtains the additional description of the component.

Returns
Additional description of the component

get_id()→ str
Obtains the unique id of the component.

Returns
Unique id of the component
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get_name()→ str
Obtains the name of the component.

Returns
Name of the component, will be presented in the model panel

set_enabled(enabled)
Sets whether the component should be enabled or not

Parameters
enabled –

Returns
This UI component

set_has_callback(has_callback)

set_visible(visible)
Sets the visibility of the component

Parameters
visible –

Returns
This UI component

class tc_python.propertymodel_sdk.UIConditionListComponent(component_id: str, name: str,
description: str)

Bases: UIComponent

System condition list UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

class tc_python.propertymodel_sdk.UIFloatComponent(component_id: str, name: str, description: str,
value: float)

Bases: UIComponent

General real value text field UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• value – Initial setting of the text field

enable_add_button()

Adds a + button to the right of the UI component.

Returns
This UI component
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enable_remove_button()

Adds a - button to the right of the UI component.

Returns
this UI component

get_value()→ float
Obtains the setting of the text field.

Returns
The setting of the text field

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position

Returns
This UI component

class tc_python.propertymodel_sdk.UIGeneralListComponent(component_id: str, name: str, description:
str, content: List[Tuple[str, str]],
selected_entry: str = '')

Bases: UIComponent

General list UI component of the model panel that can contain any strings.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• content – Entries of the list, they need to contain a locale-independent id and a localized
content string, for example: [(“ENTRY_1_ID”, “entry 1”), (ENTRY_2_ID”, “entry 2”)]

• selected_entry – Entry to be initially selected. If omitted, by default the first element is
selected.

connect_component_visibility(dependent_component_id: str, selected_item_to_set_visible: str)
Connects the visibility of any other UI component of the model panel to the selection of a certain entry of
the list.

Parameters
• dependent_component_id – Id of the UI element to be dependent on the chosen element

• selected_item_to_set_visible – Entry (locale independent id) of the list to be chosen
to set the dependent component visible

enable_add_button()

Adds a + button to the right of the UI component.

Returns
This UI component

enable_remove_button()

Adds a - button to the right of the UI component.
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Returns
This UI component

get_content()→ List[Tuple[str, str]]
Obtains the entries of the list.

Returns
Entries of the list, they need to contain a locale-independent id and a localized content string,
for example: [(“ENTRY_1_ID”, “entry 1”), (ENTRY_2_ID”, “entry 2”)]

get_dependent_components()→ Dict[str, List[str]]
Obtains a dictionary containing all UI elements currently connected regarding their visibility.

Returns
All UI elements currently connected (key: dependent component id, value: required list en-
tries to set it visible)

get_selected_entry()→ str
Obtains the initially selected entry.

Returns
Initially selected entry. If empty, the first element is selected.

remove_component_visibility(dependent_component_id: str)
Removes the visibility connection to a UI component that has been previously connected.

Parameters
dependent_component_id – Id of the previously connection UI element

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position

Returns
This UI component

class tc_python.propertymodel_sdk.UIPhaseListComponent(component_id: str, name: str, description:
str, default_phase: str = '',
any_marker_setting: bool = False)

Bases: UIComponent

Phase list UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• default_phase – Default phase, if omitted no default phase is chosen and only initially the
first element of the list is selected. If an ANY-marker is added, this is chosen as the default
element.

• any_marker_setting – Defines if an entry “ANY PHASE” should be added to the phase
list, if set to true this overrides any default phase setting
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enable_add_button()

Adds a + button to the right of the UI component.

Returns
This UI component

enable_remove_button()

Adds a - button to the right of the UI component.

Returns
This UI component

get_any_marker_setting()→ bool
Obtains the setting if any entry “ANY PHASE” is added to the phase list.

Returns
If an entry “ANY PHASE” is added to the phase list, if set to true this overrides any default
phase setting

get_default_phase()→ str
Obtains the default phase.

Returns
Default phase, if omitted no default phase is chosen and only initially the first element of the
list is selected. If an ANY-marker is added, this is chosen as the default element.

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position

Returns
This UI component

class tc_python.propertymodel_sdk.UISectionDividerComponent(component_id: str, name: str,
description: str)

Bases: UIComponent

General text field UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• string – Initial setting of the text field

get_value()→ str
Obtains the setting of the text field.

Returns
The setting of the text field

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position
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Returns
This UI component

class tc_python.propertymodel_sdk.UIStringComponent(component_id: str, name: str, description: str,
string: str)

Bases: UIComponent

General text field UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• string – Initial setting of the text field

enable_add_button()

Adds a + button to the right of the UI component.

Returns
This UI component

enable_remove_button()

Adds a - button to the right of the UI component.

Returns
This UI component

get_value()→ str
Obtains the setting of the text field.

Returns
The setting of the text field

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position

Returns
This UI component

class tc_python.propertymodel_sdk.UITemperatureComponent(component_id: str, name: str, description:
str, temp: float)

Bases: UIComponent

Temperature value text field UI component of the model panel.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• temp – Initial temperature to be set in the text field (unit defined by the user in the Thermo-
Calc system)
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enable_add_button()

Adds a + button to the right of the UI component.

Returns
This UI component

enable_remove_button()

Adds a - button to the right of the UI component.

Returns
This UI component

get_temp()→ float
Obtains the temperature set in the text field.

Returns
The temperature to be set in the text field (unit defined by the user in the Thermo-Calc system)

set_index(index: int = -1)
Sets the position in the graphical user interface.

Parameters
index – The position

Returns
This UI component

tc_python.propertymodel_sdk.create_boolean_ui_component(component_id: str, name: str, description:
str, initial_setting: bool)→
UIBooleanComponent

Creates a UI checkbox component for a boolean value. The value of that component can later be accessed during
the model evaluation.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• initial_setting – Initial setting of the checkbox

Returns
The created component

tc_python.propertymodel_sdk.create_condition_list_ui_component(component_id: str, name: str,
description: str)→
UIConditionListComponent

Creates a UI list component for all conditions defined in the system. The value of that component can later be
accessed during the model evaluation.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

Returns
The created component
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tc_python.propertymodel_sdk.create_energy_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a UI energy result quantity (in J). When the model is evaluated, a value can be added to the quantity and
it will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_float_ui_component(component_id: str, name: str, description:
str, value: float)→ UIFloatComponent

Creates a UI text field component for a real number. The value of that component can later be accessed during
the model evaluation.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• value – Initial setting of the text field

Returns
The created component

tc_python.propertymodel_sdk.create_general_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a general result quantity that can contain any type of result (without a unit). When the model is evaluated,
a value can be added to the quantity and it will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_length_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a length result quantity. When the model is evaluated, a value can be added to the quantity and it will be
used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_list_ui_component(component_id: str, name: str, description: str,
entry_list: List[Tuple[str, str]], selected_entry:
str = '')→ UIGeneralListComponent
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Creates a UI list component for string entries. The value of that component can later be accessed during the
model evaluation.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• entry_list – Entries of the list, they need to contain a locale-independent id and a localized
content string, for example: [(“ENTRY_1_ID”, “entry 1”), (ENTRY_2_ID”, “entry 2”)]

• selected_entry – Entry to be initially selected. If omitted, by default the first element is
selected.

Returns
The created component

tc_python.propertymodel_sdk.create_phase_list_ui_component(component_id: str, name: str,
description: str, default_phase: str = '',
any_marker: bool = False)→
UIPhaseListComponent

Creates a UI list component for all phases defined in the system. It is possible to select a default phase that is
supposed to be the expected phase selection for that list. The value of that component can later be accessed
during the model evaluation.

A default phase is the phase that is initially selected and re-selected as soon as a currently selected phase is
removed. If the default phase is not available, a “NONE”-marker will be created and used instead of the default
phase. A typical use case for the default phase setting is a phase list that expects to contain the LIQUID-phase
of a system.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• default_phase – Default phase, if omitted no default phase is chosen and only initially
the first element of the list is selected. If an ANY-marker is added, this is chosen as the
default element.

• any_marker – Defines if an entry “ANY PHASE” should be added to the phase list, if set
to true this overrides any default phase setting

Returns
The created component

tc_python.propertymodel_sdk.create_section_divider_ui_component(component_id: str, name: str,
description: str)→
UISectionDividerComponent

Creates an empty UI component acting as a spacer. :param component_id: Unique id of the component :return:
The created component

tc_python.propertymodel_sdk.create_solidification_rate_quantity(quantity_id: str, description:
str)→ ResultQuantity

Creates a Solidification rate result quantity. When the model is evaluated, a value can be added to the quantity
and it will be used to transfer the result to the Thermo-Calc plot engine.
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Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_strain_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a strain result quantity. When the model is evaluated, a value can be added to the quantity and it will be
used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_strength_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a strength result quantity. When the model is evaluated, a value can be added to the quantity and it will
be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_stress_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a stress result quantity. When the model is evaluated, a value can be added to the quantity and it will be
used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_string_ui_component(component_id: str, name: str, description:
str, string: str)→ UIStringComponent

Creates a UI text field component. The value of that component can later be accessed during the model evaluation.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• string – Initial setting of the text field
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Returns
The created component

tc_python.propertymodel_sdk.create_surface_energy_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates an energy result quantity (in J). When the model is evaluated, a value can be added to the quantity and
it will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_temperature_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a temperature result quantity (in K). When the model is evaluated, a value can be added to the quantity
and it will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_temperature_ui_component(component_id: str, name: str,
description: str, initial_temp: float)
→ UITemperatureComponent

Creates a UI text field component for a temperature value. The value of that component can later be accessed
during the model evaluation.

Parameters
• component_id – Unique id of the component

• name – Name of the component, will be presented in the model panel

• description – Additional description of the component

• initial_temp – Initial temperature to be set in the text field. (The unit of initial_temp is
Kelvin. The value in the text field will be automatically converted using the unit chosen by
the user.)

Returns
The created component

tc_python.propertymodel_sdk.create_thermal_gradient_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a Thermal gradient result quantity. When the model is evaluated, a value can be added to the quantity
and it will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

366 Chapter 6. API Reference



TC-Python Documentation, Release 2025b

Returns
The created result quantity

tc_python.propertymodel_sdk.create_time_quantity(quantity_id: str, description: str)→ ResultQuantity
Creates a time result quantity (in s). When the model is evaluated, a value can be added to the quantity and it
will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_velocity_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a Velocity result quantity. When the model is evaluated, a value can be added to the quantity and it will
be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

tc_python.propertymodel_sdk.create_vickers_hardness_quantity(quantity_id: str, description: str)→
ResultQuantity

Creates a Vickers hardness result quantity. When the model is evaluated, a value can be added to the quantity
and it will be used to transfer the result to the Thermo-Calc plot engine.

Parameters
• quantity_id – Unique id of the result quantity

• description – Additional description of the result quantity

Returns
The created result quantity

6.8 Module “exceptions”

exception tc_python.exceptions.APIServerException

Bases: GeneralException

An exception that occurred during the communication with the API-server. It is normally not related to an error
in the user program.

exception tc_python.exceptions.CalculationException

Bases: TCException

An exception that occurred during a calculation.

exception tc_python.exceptions.ComponentNotExistingException

Bases: GeneralException

The selected component is not existing.

6.8. Module “exceptions” 367



TC-Python Documentation, Release 2025b

exception tc_python.exceptions.DatabaseException

Bases: CalculationException

Error loading a thermodynamic or kinetic database, typically due to a misspelled database name or a database
missing in the system.

exception tc_python.exceptions.DegreesOfFreedomNotZeroException

Bases: CalculationException

The degrees of freedom in the system are not zero, i.e. not all required conditions have been defined. Please
check the conditions given in the exception message.

exception tc_python.exceptions.EquilibriumException

Bases: CalculationException

An equilibrium calculation has failed, this might happen due to inappropriate conditions or a very difficult prob-
lem that can not be solved.

exception tc_python.exceptions.GeneralCalculationException

Bases: CalculationException

General error occurring while a calculation is performed.

exception tc_python.exceptions.GeneralException

Bases: TCException

A general exception that might occur in different situations.

exception tc_python.exceptions.InvalidCalculationConfigurationException

Bases: CalculationException

Thrown when errors are detected in the configuration of the calculation.

exception tc_python.exceptions.InvalidCalculationStateException

Bases: CalculationException

Trying to access an invalid calculation object that was invalidated by calling invalidate on it.

exception tc_python.exceptions.InvalidNumberOfResultGroupsException

Bases: ResultException

A calculation result contains several result groups, which is not supported for the used method.

exception tc_python.exceptions.InvalidResultConfigurationException

Bases: ResultException

A calculation result configuration is invalid.

exception tc_python.exceptions.InvalidResultStateException

Bases: CalculationException

Trying to access an invalid result (for example a SingleEquilibriumTempResult object that got already in-
validated by condition changes or a result that was invalidated by calling invalidate on it).

exception tc_python.exceptions.LicenseException

Bases: GeneralException

No valid license for the API or any Thermo-Calc product used by it found.
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exception tc_python.exceptions.NoDataForPhaseException

Bases: ResultException

There is no result data available for a selected phase.

exception tc_python.exceptions.NotAllowedOperationException

Bases: CalculationException

The called method or operation is not allowed in the current mode of operation (i.e. debug or production mode).
Production mode means that the Property Model is only present as an *.py.encrypted-file, while in debug mode it
is available as *.py-file. Certain methods for obtaining internal model parameters are not available for encrypted
models.

exception tc_python.exceptions.PhaseNotExistingException

Bases: GeneralException

The selected phase is not existing, so no data can be provided for it.

exception tc_python.exceptions.ResultException

Bases: TCException

An exception that occurred during the configuration of a calculation result.

exception tc_python.exceptions.SyntaxException

Bases: CalculationException

Syntax error in a Console Mode expression.

exception tc_python.exceptions.TCException

Bases: Exception

The root exception of TC-Python.

exception tc_python.exceptions.UnrecoverableCalculationException

Bases: CalculationException

The calculation reached a state where no further actions are possible, this happens most often due to a FORTRAN-
hard crash in the API server backend.

Note: It is possible to catch that exception outside of the with-clause context and to continue by setting up a
new context (i.e. by a new with TCPython() as session).

tc_python.exceptions.handle_exception(e)

6.9 Module “abstract_base”

class tc_python.abstract_base.AbstractCalculation(calculator)
Bases: object

Abstract base class for calculations.

get_configuration_as_string()→ str
Returns detailed information about the current state of the calculation object.
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Warning: The structure of the calculator objects is an implementation detail and might change between
releases without notice. Therefore do not rely on the internal object structure.

get_system_data()→ SystemData
Returns the content of the database for the currently loaded system. This can be used to modify the param-
eters and functions and to change the current system by using with_system_modifications().

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

Returns
The system data

invalidate()

Invalidates the object and frees the disk space used by it. This is only required if the disk space occupied by
the object needs to be released during the calculation. No data can be retrieved from the object afterwards.

with_system_modifications(system_modifications: SystemModifications)
Updates the system of this calculator with the supplied system modification (containing new phase param-
eters and system functions).

Note: This is only possible if the system has been read from unencrypted (i.e. user) databases loaded as
a *.tdb-file.

Parameters
system_modifications – The system modification to be performed

Returns

class tc_python.abstract_base.AbstractResult(result)
Bases: object

Abstract base class for results. This can be used to query for specific values .

invalidate()

Invalidates the object and frees the disk space used by it. This is only required if the disk space occupied by
the object needs to be released during the calculation. No data can be retrieved from the object afterwards.

class tc_python.abstract_base.PhaseParameter(parameter_name: Union[str, object])
Bases: object

Database phase parameter expression used by SystemModifications.set().

Parameters
parameter_name – The phase parameter name

get_intervals()→ List[TemperatureInterval]
Returns the list of all defined intervals.

Returns
The defined temperature intervals
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get_lower_temperature_limit()→ float
Returns the lower temperature limit.

Returns
The lower temperature limit in K

get_name()→ str
Returns the name of the phase parameter.

Returns
The name of the phase parameter.

remove_all_intervals()

Removes all previously defined temperature intervals.

Returns
This PhaseParameter object

remove_interval_with_upper_limit(upper_temperature_limit: float)
Removes a previously defined temperature interval with matching upper temperature limit.

If no such interval exists, an exception is thrown.
Returns

This PhaseParameter object

set_expression_with_upper_limit(parameter_expression: str, upper_temperature_limit: float =
6000.0)

Adds/overwrites a parameter expression for a temperature interval.

Default value of the upper limit of the interval: 6000 K

Note: The lower temperature limit is either defined by the lower temperature limit given with
PhaseParameter.set_lower_temperature_limit() or by the upper temperature limit of the adjacent
interval.

Note: If there is an existing interval with exactly the same upper_temperature_limit, that interval is over-
written, otherwise the interval is added.

Parameters
• parameter_expression – The parameter expression, example:

+V34*T*LN(T)+V35*T**2+V36*T**(-1)+V37*T**3”)

• upper_temperature_limit – The upper temperature limit for which the expression
should be used

Returns
This PhaseParameter object

set_interval(interval: TemperatureInterval)
Adds/overwrites a temperature interval.

Note: The lower temperature limit is either defined by the lower temperature limit given with
PhaseParameter.set_lower_temperature_limit() or by the upper temperature limit of the adjacent
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interval.

Note: If there is an existing interval with exactly the same upper_temperature_limit, that interval is over-
written, otherwise the interval is added.

Returns
This PhaseParameter object

set_lower_temperature_limit(lower_temperature_limit: float = 298.15)
Sets the lower temperature limit of the phase parameter.

Default: 298.15 K

Parameters
lower_temperature_limit – The lower temperature limit in K

Returns
This PhaseParameter object

class tc_python.abstract_base.SystemData(system_data)
Bases: object

Provides information about the parameters and functions of a user database. The obtained objects can be used
to modify the database using with_system_modifications() of all calculators.

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as *.tdb-file.

get_phase_parameter(parameter: str)→ PhaseParameter
Returns a phase parameter.

Example:

system_data.get_phase_parameter(‘G(HCP_A3,FE:VA;0)’)

Note: Parameters can only be read from unencrypted (i.e. user) databases loaded as a *.tdb-file.

Note: For details about the syntax search the Thermo-Calc help for GES (the name for the Gibbs Energy
System module in Console Mode).

Parameters
parameter – The name of the phase parameter (for example: “G(LIQUID,FE;0)”)

Returns
The phase parameter

get_phase_parameter_names()→ List[str]
Returns all phase parameters present in the current system.

Returns
The list of phase parameters
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get_system_function(f: str)→ SystemFunction
Returns a system function.

Note: The parameter ‘f’ was previously called ‘function’ but was renamed.

Example:

system_data.get_system_function(‘GHSERCR’)

Note: Functions can only be read from unencrypted (i.e. user) databases loaded as a *.tdb-file.

Note: For details about the syntax search the Thermo-Calc help for GES (the name for the Gibbs Energy
System module in Console Mode).

Parameters
f – The name of the system function (for example: “GHSERCR”)

Returns
The system function

get_system_function_names()→ List[str]
Returns all system functions present in the current system.

Returns
The list of system functions

class tc_python.abstract_base.SystemFunction(function_name: Union[str, object])
Bases: object

Database function expression used by SystemModifications.set().

Parameters
function_name – The function name

get_intervals()→ List[TemperatureInterval]
Returns the list of all defined intervals.

Returns
The defined temperature intervals

get_lower_temperature_limit()→ float
Returns the lower temperature limit.

Returns
The lower temperature limit in K

get_name()→ str
Returns the name of the system function.

Returns
The name of the system function
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remove_all_intervals()

Removes all previously defined temperature intervals.

Returns
This SystemFunction object

remove_interval_with_upper_limit(upper_temperature_limit: float)
Removes a previously defined temperature interval with matching upper temperature limit.

If no such interval exists, an exception is thrown.
Returns

This SystemFunction object

set_expression_with_upper_limit(function_expression: str, upper_temperature_limit: float = 6000.0)
Adds/overwrites a function expression for a temperature interval.

Default value of the upper limit of the interval: 6000 K

Note: The lower temperature limit is either defined by the lower temperature limit given with
SystemFunction.set_lower_temperature_limit() or by the upper temperature limit of the adjacent
interval.

Note: If there is an existing interval with exactly the same upper_temperature_limit, that interval is over-
written, otherwise the interval is added.

Parameters
• function_expression – The function expression, example:

+V34*T*LN(T)+V35*T**2+V36*T**(-1)+V37*T**3”)

• upper_temperature_limit – The upper temperature limit for which the expression
should be used

Returns
This SystemFunction object

set_interval(interval: TemperatureInterval)
Adds/overwrites a temperature interval.

Note: The lower temperature limit is either defined by the lower temperature limit given with
SystemFunction.set_lower_temperature_limit() or by the upper temperature limit of the adjacent
interval.

Note: If there is an existing interval with exactly the same upper_temperature_limit, that interval is over-
written, otherwise the interval is added.

Returns
This SystemFunction object
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set_lower_temperature_limit(lower_temperature_limit: float = 298.15)
Sets the lower temperature limit of the system function.

Default: 298.15 K

Parameters
lower_temperature_limit – The lower limit in K

Returns
This SystemFunction object

class tc_python.abstract_base.SystemModifications

Bases: object

Functionality to modify a user database during a calculation by changing phase parameters and system functions.

The actual changes are only applied by using tc_python.abstract_base.AbstractCalculation.
with_system_modifications() on a calculator object.

run_ges_command(ges_command: str)
Sends a GES-command. This is actually applied when running `with_system_modifications` on a cal-
culator object.
Example: run_ges_command(“AM-PH-DE FCC_A1 C_S 2 Fe:C”) for adding a second composition set to
the FCC_A1 phase with Fe as major constituent on first sublattice and C as major constituent on second
sublattice.

Note: For details about the syntax search the Thermo-Calc help for GES (the name for the Gibbs Energy
System module in Console Mode).

Note: It should not be necessary for most users to use this method, try to use the corresponding method
implemented in the API instead.

Warning: As this method runs raw GES-commands directly in the engine, it may hang the program
in case of spelling mistakes (e.g. forgotten parenthesis, . . . ).

Parameters
ges_command – The GES-command (for example: “AM-PH-DE FCC_A1 C_S 2 Fe:C”)

Returns
This SystemModifications object

set(parameter_or_function: Union[PhaseParameter, SystemFunction])
Overwrites or creates a phase parameter or system function.

Example: system_modifications.set(PhaseParameter(‘G(LIQUID,FE;0)’).set_expression_with_upper_limit(‘+1.2*GFELIQ’))

Example: system_modifications.set(SystemFunction(“DGDEF”).set_expression_with_upper_limit(‘+10.0-
R*T’, 1000).set_expression_with_upper_limit(‘+20.0-R*T’, 3000))

Note: The old parameter/function is overwritten and any temperature intervals not defined are lost.
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Note: Please consult the Thermo-Calc GES-system documentation for details about the syntax.

Returns
This SystemModifications object

class tc_python.abstract_base.TemperatureInterval(expression: Union[str, object],
upper_temperature_limit: float)

Bases: object

Temperature interval expression used by the classes SystemFunction and PhaseParameter.

Parameters
• expression – The temperature function expressed in Thermo-Calc database syntax.

• upper_temperature_limit – The upper temperature limit in K

get_expression()→ str
Returns the function expression of this temperature interval.

Returns
The temperature function expression

get_upper_temperature_limit()→ float
Returns the upper limit of this temperature interval.

Returns
The upper temperature limit in K

set_expression(expression: str)
Sets the function expression of this temperature interval.

Parameters
expression – The temperature function expression

set_upper_temperature_limit(upper_temperature_limit: float)
Sets the upper limit of this temperature interval.

Parameters
upper_temperature_limit – The upper temperature limit in K

6.10 Module “license”

class tc_python.license.LicenseManager(license_manager)
Bases: object

Manages the license operations for Thermo-calc licenses for TC-Python, including login, activation, and proxy
settings.

activate(user: str, password: str)
Activates the license.

Parameters
• user – The username

• password – The password
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activate_offline(user: str, password: str, path: str = '')
Activate the license with an offline activation response file.

Parameters
• user – The username

• password – The password

• path – Optional path to folder where the activation response file is located

create_offline_activation_file(user: str, password: str, path: str = '')
Create a file for offline activation.

Parameters
• user – The username

• password – The password

• path – Optional path to folder where the activation file is created

deactivate()

Deactivates the license if the license was activated using online method.

Raises
LicenseException – If not logged in or license was activated using activate_offline().

deactivate_offline(path: str = '')
Deactivates the license if the license was activated using activate_offline().

Parameters
path – Optional path to folder where the deactivation file is located

Raises
LicenseException – If not logged in

get_info()→ str
Retrieves the current license information.

Returns
The license information

proxy_settings_remove()

Disables the proxy settings.

proxy_settings_set(host: str, port: int, user: str, password: str)
Sets the proxy settings with the given host, port, username, and password.

Parameters
• host – The proxy host

• port – The proxy port

• user – The proxy username

• password – The proxy password

update()

Updates the license.
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CHAPTER

SEVEN

TROUBLESHOOTING

This section provides an FAQ for common problems that occur when using TC-Python.

7.1 Diagnostics script

If you have problems running TC-Python, run the diagnostics script below.

On Linux you can alternatively download the script directly into your current working directory by:

curl -O https://download.thermocalc.com/downloads/support/diagnostics-py/2025b/tc-python-
↪→diagnostic-script-2025b.py

"""
Run this script when troubleshooting TC-Python

It is important to run this script EXACTLY the same way as you run your TC-Python script
(In the same IDE, same project, same Python environment, same Jupyter notebook e.t.c)

"""

version = '2025b'

print('Testing TC-Python version: ' + version)
print('Please make sure that the variable "version" above, matches the release that you␣
↪→want to test, if not change it and re-run this script.')

# below this line, nothing needs to be manually updated.

import sys
print('')
print('Python version (needs to be at least Python 3.8, Python 2.x is not supported):')
print(sys.version)
if sys.version_info[0] < 3 or sys.version_info[1] < 8:

print('Wrong version of Python !!!!!')

print('')
print('Python executable path: (gives a hint about the used virtual / conda environment,␣
↪→in case of Anaconda the corresponding \n'

'environment name can be found by running `conda env list` on the Anaconda command␣
↪→prompt, '

(continues on next page)
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(continued from previous page)

'TC-Python must be installed into \nEACH separate environment used!)')
print(sys.executable)

import os
print('')
print('Thermo-Calc ' + version + ' installation directory: (must be a valid path to a␣
↪→complete installation of ' + version + ')')
tc_env_variable = 'TC' + version[2:].upper() + '_HOME'
try:

print(os.environ[tc_env_variable])
except:

print('No Thermo-calc environment variable for ' + version + ' was found. (' + tc_
↪→env_variable + ')')

import tc_python
numerical_version = version[:-1]
if version[-1] == 'a':

numerical_version += '.1.*'
elif version[-1] == 'b':

numerical_version += '.2.*'
print('')
print('TC-Python version: (needs to be ' + numerical_version + ')')
print(tc_python.__version__)

user_based_license_var = os.environ.get('TC_LICENSE_SPRING', None)
user_based_license = False
if user_based_license_var is not None:

user_based_license = user_based_license_var.upper() == 'Y'

if not user_based_license:
print('Url of license server: (if license server is NO-NET, you need a local license␣

↪→file)')
try:

print(os.environ['LSHOST'])
except:

print('No Thermo-calc license server url was found. (LSHOST)')

print('')
print('Path to local license file: (only necessary if not using license server)')
try:

print(os.environ['LSERVRC'])
except:

print('No path to local license file was found. (LSERVRC)')
else:

print('')
print('User/password based licenses is enabled')
print("License Information:")
with tc_python.TCPython() as session:

license_manager = session.get_license_manager()
print(license_manager.get_info())

(continues on next page)
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(continued from previous page)

with tc_python.TCPython() as session:
print('')
print('Lists the databases (should be a complete list of the installed databases␣

↪→that you have license for or do not require license):')
print(session.get_databases())

7.2 “No module named tc_python” error on first usage

This problem occurs because your used Python interpreter cannot find the TC-Python package. We expect that you
have installed the TC-Python package in your Python system interpreter following the instructions in the Installation
Guide.

Normally the error message “No module named tc_python” is caused by unintentionally configuring a PyCharm project
to use a so-called Virtual Environment. This happens unfortunately by default when creating a new PyCharm project
with not changing the default settings.

Note: A Virtual Environment is basically a separate and completely independent copy of the system-wide Python
interpreter. It does not contain any packages.

On Windows systems we recommend to use the Anaconda Python Distribution as Python interpreter. However, the
instructions given here are valid for any operating system and distribution.

Since TC-Python 2018b we do recommend to not use Virtual Environments unless there is a reasonable use case for
that.

There are two possible solutions to fix the problem:

1. The quick fix for your problem is to run

pip install <path to the TC-Python folder>/TC_Python-<version>-py3-none-any.whl

within the Terminal window of the opened PyCharm project. This Terminal window automatically runs within
the Virtual Environment configured for the project (if any). You can see the name of the Virtual Environment at
the beginning of each command prompt line (here it is called venv):

Microsoft Windows [Version 10.0.16299.431]
(c) 2017 Microsoft Corporation. All rights reserved.

(venv) C:\Users\User\Documents\>

The command will consequently install TC-Python also within that Virtual Environment automatically. The
Terminal window can be found at the bottom of the IDE. Note that it might be necessary to enable these buttons
first by selecting the menu entry View→Tool Buttons.

2. The better fix is to change your project to use the system interpreter. This is described in detail in the section
Fixing potential issues with the environment in Step 5 of the Installation Guide.

It is recommendable to use that approach also for all your future projects.

Both fixes will only change the configuration of the opened project. Further useful information can be found in the
section Python Virtual Environments.
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7.3 “pip install” fails with “Failed to establish a new network connec-
tion” or similar

If pip install fails with a network related error (might also be “socket not available”, “retrying after connection broken”,
. . . ) it is often due to the computer being behind a proxy-server, this is common in large organizations. Of course also
the network connection might be broken.

TC-Python has dependencies to a few other packages:

• py4j

• jproperties

• six (transient dependency of jproperties)

1. The recommended approach is to simply use pip. It will resolve the dependencies automatically by downloading
them from the PyPI-repository server (https://pypi.org). If your computer is located behind a proxy-server, the
connection to the repository will fail. In that case it is necessary to configure pip with the detailed configuration
of the proxy server:

pip install -proxy user:password@proxy_ip:port py4j jproperties

2. Another alternative is to manually download the latest *.whl-file of each dependency from the repository server
(https://pypi.org -> Search projects) and to install it manually using:

pip install py4j-#.#.#-py2.py3-none-any.whl
...

The actual actual version number needs to be inserted into the file name. The downside of this approach is that
updates to that package have to be fully manual also in the future. Additionally it is also necessary to install all
transient dependencies in that way.
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