

TC-Prisma Online Training Course

Day 2 - April 16, 2025

Åke Jansson, Carl Magnus Lancelot, Kevin Wu, Qing Chen

www.thermocalc.com

Schedule

Thermo-Calc

- 09:00 Yesterday's home assignment
- 09:10 Theoretical Background: Growth Models
- 09:40 Examples: Ni alloys
- 10:30 Q & A
- 10:45 Examples: Steel
- 11:20 Example: Steel, Para-equilibrium models
- 11:50 Q & A

Home assignment: AI - Zr Alloy

System			
Database package	ALDE	MO + MALDEMO (or TCAL9+MOBAL8)	
Elements	Al, Zr,	Si, (Fe is optional if TCAL9 used)	
Matrix phase	FCC_/	41	
Precipitate phase	Al ₃ Sc (= AL3X in TCAL9)		
Conditions			
Composition	Al - 0.23 Zr – 0.05 Si (- 0.1 Fe) (wt.%)		
Temperature	650 K		
Simulation time	500 hours		
Nucleation properties	Nucleation Site Type: Bulk		
Data Parameters			
Interfacial Energy		Calculated	
Molar Volume (Matrix):		Fcc_A1: from database	
Molar Volume (Precipitate):		Al ₃ Sc: from database	

Home assignment: AI - Zr Alloy

The aim of this assignment is not only to simulate the precipitation treatment of this alloy, but to compare its simulated hardness (HV) with experimental data from the paper.

Following the paper, it is not the most stable Al-Zr phase that forms during the first several hundred hours of heat treatment. The most stable phase is called AL3ZR_D023 in TCAL and will probably become stable after even longer time at high T. Instead another phase of the same chemistry, AL3X, precipitates first (this phase is called AL3SC in ALDEMO).

The calculation of hardness in TC-Prisma is based on the same principle as the calculation of Yield strength. The selection and setting of parameters is done in the Plot renderer, see next slide.

Use the experimental file "Souza_data.exp" for comparison with your result.

Pedro Henrique Lamarão Souza^{a,}, Carlos Augusto Silva de Oliveira^a, José Maria do Vale Quaresma^b

Home assignment: AI - Zr Alloy

1. In the Plot renderer, select Yield Strength as Y-axis variable.

		had a second sec
₩V0.2		
AI-023Zr		
Legend option: On V		
	Mode	Advanced \vee
	Density of time steps	Low
2 Then change the unit to kgf/mm2	Matrix	FCC_A1 V
	Solid solution strengthening	
3. Use the Deschamps model	Evaluate at higher temperature	
or obe the Desenantps model	Grain boundary strengthening	
	Orsin size [um]	Calculated
	User-defined Hell-Petch coefficient	
Axis variable: Vield strength V Kilogram-force per square millimeter V Total Hardness (Vield Strength) V Configuration Panel	Precipitation strengthening	
	Precipitate	AL3SC V
	Precipitation strengthening model	Deschamps model (Al-base)
4 "Critical radius" in the precipitation models reflects the	Mean radius Deschamps model	1.0E-8
4. Critical radius in the precipitation models reflects the	Critical radius	8e-9
switch between particle cutting and particle looping. Here	β	0.43
Switch between particle cutting and particle looping. Here	Use Kocks' statistics	
it is used more or less as a fitting parameter.	Additional precipitation parameters	
	Constant strength addition	
Axis type: Linear V		
Limits: 0.0 to 1.0 step 0.1		
$\odot \odot \blacksquare$		

HA: Al - Zr Alloy - Results

Theory: Growth

Models and Model Parameters

 $J = \int_{-*}^{\infty} j(r) dr$

LS (Langer-Schwartz) and KWN (Kampmann and Wagner Numerical) Approach

Available models

Binary

$$\upsilon = \frac{c^{\alpha} - c^{\alpha/\beta}(r)}{c^{\beta} - c^{\alpha/\beta}(r)} \frac{D}{r}$$

H.B. Aaron, D. Fainstain, G. R. Kotler, J. Appl. Phys., 41(1970)4404

□ Multi-Component Coarsening

$$\upsilon = \frac{2\sigma V_m^{\alpha}}{\left(\Delta C^{\alpha\beta}\right] \left[M\right]^{-1} \left[\Delta C^{\alpha\beta}\right] r} \left[\frac{1}{r} \left(\frac{1}{r^*} - \frac{1}{r}\right)\right] \text{ J.E. Morral, G.R. Purdy, Scripta Metall.} Mater., 30(1994)905-908}$$

PrecipiCalc Model

$$\upsilon = \left(1 + r\sqrt{4\pi N_v r_a}\right) \frac{\Delta \overline{c}_i G_{ij}^{\alpha} \Delta c_j^{\infty} + \overline{c}_{\delta}^{\beta} \left(\overline{\mu}_{\delta}^{\alpha} - \overline{\mu}_{\delta}^{\beta}\right) - 2V_m^{\beta} \sigma / r}{r\Delta \overline{c}_i G_{ij}^{\alpha} D_{jk}^{-1} B_k + 1/M}$$

H.J. Jou et al. Superalloy 2004, p.877-886

Available models

□ Similarity-Supersaturation

$$\upsilon = \frac{S_1 \sqrt{D_1}}{2\sqrt{t}} = \frac{S_2 \sqrt{D_2}}{2\sqrt{t}} = \cdots \qquad S_i = f(\Omega_i)$$

T.Sourmail, Ph. D Thesis, Univ. Cambridge, 2002

□ Thermodynamic Extremum Principle

$$\dot{\rho_k} = \frac{F - (2\gamma_k/\rho_k)}{RT\rho_k} \left[\sum_{i=1}^n \frac{(c_{ki} - c_{0i})^2}{c_{0i}D_{0i}} \right]^{-1}$$

Svoboda J, Fischer FD, Fratzl P, Kozeschnik E. Mater Sci Eng A, 385(2004)166

- Local equilibrium at interface
- Flux balance equation

$$\mu_i^{\alpha/\beta} = \mu_i^{\beta/\alpha}$$
$$\nu(c_i^{\beta/\alpha} - c_i^{\alpha/\beta}) = -J_i^{\alpha} = \sum_j D_{ij}^{\alpha} \frac{\partial c_j^{\alpha}}{\partial z}$$

General model – new in TC 2019a

Para-equilibrium and Non-partitioning local equilibrium

 $\beta^* = \frac{4\pi r \, \tilde{K}}{\alpha^4}$

Models: NPLE and Para-eq.

Models to handle NPLE (non partitioning local equilibrium) and para-equilibrium were introduced several years ago.

These models deal with fast diffusion processes and are additions to the Simplified growth rate model.

These models need only to consider the movement of the fast diffusing specie, usually an interstitial such as C or N.

The new (2023) **PE Automatic** model enables a smooth transition from Paraequilibrium growth rate model to Simplified growth rate model. The rate of transition process is dependent on the relative differences in diffusion between C and substitutional elements, as well as the differences in driving force between PE and Ortho-Equilibrium (i.e. Local Eq.).

The non-zero volume correction

$$\upsilon' = \upsilon \left(1 + r \sqrt{4\pi N_V} < r > \right)$$

Chen MK, Voorhees PW, Modeling and simulation in materials science and engineering 1993;1:591-612.

Ortho-eq vs Para-eq

Fe-0.26C-0.11Cr at T= 773 K

Ortho-eq vs Para-eq

Ultra-high-strength steel at T= 783 K

Precipitate Shapes

Interfacial Energy Anisotropy*

$$\frac{\sigma_l}{\sigma_r} = \frac{l}{r} = \alpha$$

- Elastically Isotropic or Cubic Systems
- First Approximation: Elastically Homogenous
- Eshelby's Theory**

Particle Shape

19/115

- Determined by Minimization of Combined Interfacial Energy and Elastic Energy
- User-Defined, Fixed Value

* C.A. Johnson, *Surf. Sci.* 3(1965)429
** J.D. Eshelby, *Pro. Roy. Soc. A*, 241(1957)376

Needle (Prolate Spheroid)

Effect on Growth Rate

K. Wu, Q. Chen, P. Mason, J Phase Eq. Diffus. 39(2018)571-583.

 $rac{dR}{dt} = K_{\sigma} \cdot K_{
m shp} \cdot \left(rac{dR}{dt}
ight)_{
m sph}$

R: Radius of Equivalent Sphere

- Interfacial energy anisotropy*
 - Generalized Gibbs-Thomson Effect Ο

$$\mu(R) - \mu(\infty) = K_{\sigma} \frac{2\sigma_{\rm ch}^{\rm sp} V_m}{R}$$

Shape Effect

20/115

Assumption of Shape Conserving Concentration Ο Field**

* C.A. Johnson, Surf. Sci. 3(1965)429

** F.S. Ham, Quart. Appl. Math., 17(1959)137; J Phys. Chem. Solids, 6(1958)335

*** http://http://mathworld.wolfram.com

Plate***

Needle***

(Prolate Spheroid)

Effect on Growth Rate

$$rac{dR}{dt} = K_{\sigma} \cdot K_{
m shp} \cdot \left(rac{dR}{dt}
ight)_{
m sph}$$
 $lpha = rac{l}{r} \ge 1$

R: Radius of Equivalent Sphere

Aspect ratio $\alpha = \frac{l}{r} \ge 1$ Eccentricity

Thermo-Calc

Software

$$e = \sqrt{1 - \frac{1}{\alpha^2}}$$

Needle

$$K_{\sigma} = \sqrt[3]{\alpha}$$
$$K_{\rm shp} = \frac{2\sqrt[3]{\alpha^2}e}{\ln(1+e) - \ln(1-e)}$$

α	$K_{\sigma}K_{shp}$
3.0	1.6
10.0	3.3
15.0	4.4
20.0	5.4

Plate

$$K_{\sigma} = \sqrt[3]{\alpha^2}$$

$$K_{\rm shp} = \frac{e\sqrt[3]{\alpha}}{\arccos(0) - \arccos(e)}$$

α	$K_{\sigma}K_{shp}$
10.0	6.8
15.0	10.0
20.0	13.1

Examples Ni alloys

TC-PRISMA Example

Available online at www.sciencedirect.com

Acta Materialia 56 (2008) 448-463

www.elsevier.com/locate/actamat

Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy

Chantal K. Sudbrack ^{a,b}, Tiffany D. Ziebell ^{a,c}, Ronald D. Noebe ^d, David N. Seidman ^{a,e,*}

^a Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA ^b Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

^c Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ^d NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135, USA

^e Northwestern University Center for Atom-Probe Tomography, 2220 Campus Drive, Evanston, IL 60208, USA

Received 8 July 2007; received in revised form 26 September 2007; accepted 28 September 2007 Available online 26 November 2007

Abstract

The effect of adding 2 at.% W to a model Ni–Al–Cr superalloy on the morphological evolution, spatial correlations and temporal evolution of $\gamma'(L1_2)$ -precipitates at 1073 K is studied with scanning electron microscopy and atomic force microscopy. Adding W yields a larger microhardness, earlier onset of spheroidal-to-cuboidal precipitate morphological transition, larger volume fraction (from ~20% to 30%), reduction in coarsening kinetics by one-third and a larger number density (N_v) of smaller mean radii ($\langle R \rangle$) precipitates. The kinetics of $\langle R \rangle$ and interfacial area per unit volume obey $t^{1/3}$ and $t^{-1/3}$ relationships, respectively, which is consistent with coarsening driven by interfacial energy reduction. The N_v power-law dependencies deviate, however, from model predictions, indicating that a stationary state is not achieved. Quantitative analyses with precipitate size distributions, pair correlation functions and edge-to-edge interprecipitate distance distributions give insight into two-dimensional microstructural evolution, including the elastically driven transition from a uniform γ' -distribution to one-dimensional $\langle 001 \rangle$ -strings to eventually clustered packs of γ' -precipitates in the less densely packed Ni–Al–Cr alloy.

© 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

System	
Database package	TCNI12 + MOBNI6
Elements	Ni, Al, Cr
Matrix phase	DIS_FCC_A1
Precipitate phases	FCC_L12#2
Conditions	
Composition	Ni – 9.8 Al – 8.3 Cr (at.%)
Temperature	800 °C
Simulation time	1E6 s
Nucleation properties	Nucleation Site Type: Bulk
Data Parameters – Interfacial Energies	
Interfacial Energy	Calculated
Molar Volume (Matrix phase):	DIS_FCC_A1: from database
Molar Volume (Precipitate phase):	FCC_L12#2: from database

25/115

Strange result for Volume fraction compared with experimental data from Sudbrack when the setup on previous page is used:

In addition, the fit for mean radius as function of time, is not very good.

System	
Database package	TCNI12 + MOBNI6
Elements	Ni, Al, Cr
Matrix phase	DIS_FCC_A1
Precipitate phases	FCC_L12#2
Conditions	
Composition	Ni – 9.8 Al – 8.3 Cr (at.%)
Temperature	800 °C
Simulation time	1E6 s 8.9 Cr
Nucleation properties	Nucleation Site Type: Bulk
Data Parameters – Interfacial Energies	
Interfacial Energy	Calculated
Molar Volume (Matrix phase):	DIS_FCC_A1: from database
Molar Volume (Precipitate phase):	FCC_L12#2: from database

Ni-8Al-8Cr and Ni-10Al-10Cr

J Mater Sci (2013) 48:825–831 DOI 10.1007/s10853-012-6802-7

Influence of composition on monomodal versus multimodal γ' precipitation in Ni–Al–Cr alloys

T. Rojhirunsakool · S. Meher · J. Y. Hwang · S. Nag · J. Tiley · R. Banerjee

Abstract This study investigates the influence of alloy composition on γ' precipitation in Ni–8Al–8Cr and Ni–10Al–10Cr at.% during continuous cooling from a supersolvus temperature. When subjected to the same cooling rate, Ni–8Al–8Cr develops a monomodal population, whereas Ni–10Al–10Cr develops a multimodal (primarily bimodal) population of γ' precipitates. The bimodal γ' precipitate size distribution in Ni–10Al–10Cr alloy can be attributed to two successive nucleation bursts during continuous cooling while the monomodal γ' size distribution in Ni–8Al–8Cr results from a single nucleation burst followed by a longer time—wider temperature window for nucleation resulting in a larger number density of precipitates. Three-dimensional atom

System	
Database package	NIDEMO + MNIDEMO
Elements	Ni, Al, Cr
Matrix phase	DIS_FCC_A1
Precipitate phases	FCC_L12#2
Conditions	
Composition	Ni – 10 (8) Al – 10 (8) Cr (at.%)
Temperature	940 - 380 °C
Simulation time	2400 s
Nucleation properties	Nucleation Site Type: Bulk
Data Parameters – Interfacial Energies	
Interfacial Energy	Bulk: 0.023 J/m ²
Molar Volume (Matrix phase):	DIS_FCC_A1: from database
Molar Volume (Precipitate phase):	FCC_L12#2: from database
Mobility Adjustment Factor	1 (i.e. no change)

Ni - 8 Al - 8 Cr

Ni - 10 Al - 10 Cr

Ni - 8 Al - 8 Cr

Ni – 10 Al – 10 Cr

Ni-10Al-10Cr and Ni-8Al-8Cr

Vertical phase diagram section in Ni-xAl-xCr

Thermodynamic driving force

Ni-10Al-10Cr and Ni-8Al-8Cr

Thermodynamic driving force

Nucleation rate

U720Li

Precipitation Kinetics during Continuous Cooling

wt.%	1*	2**
Al	2.53	2.46
В	0.014	
С	0.014	0.025
Со	14.43	14.75
Cr	15.92	16.35
Fe	0.09	0.06
Мо	2.96	3.02
Ti	4.96	4.99
W	1.26	1.3
Zr		0.035
Ni	Bal	Bal

Databases: TTNI8+MOBNI1

* Radis et al., *Superalloys* 2008

37/115

** Mao et al., Metall. Mater. Trans. A, 32A(10) 2441(2001)

U720Li : Cooling Rate Effect

Size Distribution

Mean Particle Size

Inconel 718

Co-Precipitation of γ' and γ'' from FCC (γ) ---Complex example to try on your own.

Chemical Composition (wt.%)* γ'' BCT DO₂₂ Ni Ti Fe Cr Nb Mo A (001) _{y"} | | {001} _y, [100] _{y"} | <100> _y 5.3 18.14 17.9 2.99 0.5 0.97 Bal. $\circ \gamma'$: Sphere + γ'' : Plate

 $\circ \gamma'$ misfit strain from database

Coherency strains ε $\varepsilon_{11}^{T} = 6.67 \times 10^{-3}$ $\varepsilon_{33}^{T} = 2.86 \times 10^{-2}$ Shear modulus at 1223 KPoisson's ratio $\mu = 57.1$ GPa $\nu = 0.33$

* A. Devaux et al. *Mater. Sci. Eng. A* 486(2008)117

** R. Cozar and A. Pineau, Metall Trans. B 4(1973)47

Microstructure of IN718**

Results - IN718 example

* Experimental Data and Picture from A. Devaux et al. *Mater. Sci. Eng. A* 486(2008)117; M. Sundararaman et al., *Met. Trans. A*, 23(1992)2015

Q&A

Examples Steel

Multi-precipitates

Available online at www.sciencedirect.com

www.actamat-journals.com

Simulation of the kinetics of precipitation reactions in ferritic steels

A. Schneider *, G. Inden

Department of Materials Technology, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf, Germany

Received 15 June 2004; received in revised form 1 October 2004; accepted 4 October 2004 Available online 5 November 2004

Abstract

Computer simulations of diffusion-controlled phase transformations in model alloys of Fe–Cr–C, Fe–Cr–W–C, Fe–Cr–Si–C, and Fe–Cr–Co–V–C are presented. The compositions considered are typical for ferritic steels. The simulations are performed using the software DICTRA and the thermodynamic calculations of phase equilibria are performed using Thermo-Calc. The thermodynamic driving forces and the kinetics of diffusion-controlled precipitation reactions of $M_{23}C_6$, M_7C_3 , cementite and Laves-phase (Fe, $Cr)_2W$ are discussed. The simultaneous growth of stable and metastable phases is treated in a multi-cell approach. The results show remarkable effects on the growth kinetics due to the competition during simultaneous growth.

Keywords: Ferritic steels; Phase transformation kinetics; Thermodynamics; Kinetics

A. Schneider, G. Inden / Acta Materialia 53 (2005) 519-531

Fig. 6. Three-cell simulation of competitive growth of stable $M_{23}C_6$ and of metastable M_7C_3 and M_3C in Fe–12Cr–0.1C at 1053 were 5 μ m and the nucleus sizes were 1 nm in each cell.

System	
Database package	TCFE14 + MOBFE8
Elements	Fe, Cr, C
Matrix phase	Bcc_A2
Precipitate phases	$M_{23}C_6$, M_7C_3 , Cementite
Conditions	
Composition	Fe – 12 Cr – 0.1 C (wt.%)
Temperature	1053 K
Simulation time	1e6 s
Nucleation properties	Nucleation Site Type: Grain Boundaries
Data Parameters–Interfacial Energies	
Cementite	0.167 J/m ²
M ₂₃ C ₆	0.252 J/m ²
M ₇ C ₃	0.282 J/m ²
To include already existing	g size distributions – see Exar

Same as Ex 1 but starting from already existing particle distributions of all three carbides, with small mean radius.

Phase:	FCC_L12#2	<u>.</u>	-	
Nucleation sites:	Bulk		-	Calculate f
Interfacial energy:	User-define	d	-	0.023
Growth rate model:	Simplified		-	
Morphology:	Sphere		-	
Transformation strain:	Disregard		-	
Molar volume:	Database		-	7.0E-6
Phase boundary mobility:	10.0	m ⁴ /Js		
Phase energy addition:	0.0	J/mol		
Approximate driving force:				
Preexisting size distribution:	Edit	particle size di	stributi	on

	LSW
	Normal
	Log normal
	Weibull
A Preexisting Particl	e Size Distribution
Compositions	
Dependent compo	nent: Fe 💛 Mass percent
Cr 71.4	
Size Distribution	
Length unit:	Meter
Input type:	Generate 3D PSD from distribution function \sim
Distribution:	LSW Vean radius: 1E-8 Generate
Amount of phase:	Volume percent v 0.1

Radius [m]	Number Density	
1.0E-9	209150.70723283727	
1.014E-9	215353.88475874296	
1.028E-9	221658.14714236386	
1.04200000000000001	228063.97599748537	
1.056E-9	234571.8556458 <mark>66</mark> 37	
1.07E-9	241182.27313133603	
1.084E-9	247895.71823396112	
1.0980000000000001	254712.68348428674	
1.112E-9	261633.66417764925	
1.126E-9	268659.15838856064	
1.14E-9	275789.66698516946	
1.15400000000000000	283025.69364379055	
1.168E-9	290367.74486351345	
1.182E-9	297816.32998087996	
1 1005 0	305371 0C11046306	

Initial Particle Size Distribution	
Phase	CEMENTITE
Initial composition	Cr 71.4 wt.%
Distribution	LSW with mean radius 1.0e-8m
Amount	0.001 (volume fraction)
Initial Particle Size Distribution	
Phase	M23C6
Initial composition	Cr 69.3 wt.%
Distribution	LSW with mean radius 1.0e-8m
Amount	0.0015 (volume fraction)
Initial Particle Size Distribution	
Phase	M7C3
Initial composition	Cr 82.9 wt.%
Distribution	LSW with mean radius 1.0e-8m
Amount	0.0015 (volume fraction)

Steel Example 3 – TTP

System			
Database package	TCFE14 + MOBFE	8	
Elements	Fe,C,Cr,Mn,Ni,Si	Number of grid points: 15 Maximum number of grid points: 20	
Matrix phase	Fcc_A1		
Precipitate phase	$M_{23}C_{6}$	Minimum number of grid points: 10	
Conditions – TTT diagram	- Phase fraction = 0.001		
Composition	Fe-0.068C-20.89Cr-1.61Mn-10.28Ni-0.49Si (wt.%)		
Temperature	500 °C, 860 °C, 20 °C		
Simulation time	1E7 s		
Nucleation properties	Nucleation Site Type: Grain Boundary, Grain size 100 μm		
Data Parameters			General model
Interfacial Energy	Grain Boundary:	Calculated	

Example Steel, Para-Equilibrium Models

Para-equilibrium

Example: Para-equilibrium or not?

Precipitation of cementite during tempering of martensite in a Fe-Mn-C steel. Consider three different phase interface conditions: the usual ortho-equilibrium condition, para-equilibrium condition, and a smooth transition from para-equilibrium to ortho-equilibrium condition using the recent *PE Automatic* growth rate model.

The simulation results can be compared with the experimental data from Miyamoto et al. [2007Miy].

Martensite will be represented by BCC_A2 which requires some rather unusual settings for mobility, grain size and grain shape.

Image from Wikipedia

[2007Miy] G. Miyamoto, J. Oh, K. Hono, T. Furuhara, T. Maki, Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite. Acta Mater. 55, 5027–5038 (2007).

Example – Para-equilibrium or not?

System			
Database package		FEDEMO + MFEDEMO	
Elements		Fe, Mn, C	
Matrix phase		BCC_A2	
Precipitate phase		Cementite	
Conditions			
Composition	Fe- 0.61 C- 1.96 Mn (wt-%)		
Temperature	650 °C		
Simulation time	1E6 s (5 seconds for PE)		
Growth rate models	Simplified / Para-eq / PE Automatic		
Nucleation properties	Nucleation Site: Grain boundaries		
Data Parameters			
Interfacial Energy		Calculated	
Molar Volumes		Database	
Grain size / Grain aspect ratio		1E-7 m / 100	
Mobility Adjustment factor		0.008	
Activation energy		- 70000 J/mol	

Example – Para-equilibrium or not?

We will send a **course certificate** by email some days after also the AM Online course is finished next week.

Email <u>ake@thermocalc.se</u> if you think we have your name and affiliation incorrect.

Q&A

End of course.