

Thermo-Calc On-line Training Day 3, April 11, 2024

Åke Jansson, Shan Jin, Johan Bratberg, Carl-Magnus Lancelot, Nicholas Grundy

www.thermocalc.com

Schedule

Thermo-Calc Day 3

- 9:00 About the home assignment.
- 9:10 Scheil solidification simulation.
- 9:40 App1: Alloy design, duplex stainless steel.
- 10:20 Demo of console mode.
- 10:30 Q & A
- 10:45 Property Model Calculation.
- 11:15 Process Metallurgy Module Calculation.
- 11:35 Resources for help.
- 11:45 Q & A
- 12:00 End.

App = Thermo-Calc calculation applied to a real case.

Home Assignment 2

Calculate Equilibrium at 600 °C for the following steel:

• AISI 1040 with Fe (bal.) – 0.4C - 0.7Mn (wt-%)

Which microstructure aligns with your result? Is this Graphite or Fe₃C (Cementite)?

From ASM International: Heat Treaters Guide (1995).

Home Assignment 2 - solution

- Which microstructure aligns with your result?
- Is this Graphite or Fe₃C (Cementite)?

Both do! Equilibrium calculations with Thermo-Calc can give volume fraction/composition data but not tell you about the morphology. The steel on the left is air cooled and the steel on the right is spheroidized (= held below A1 in the ferrite + cementite two-phase field for long time to increase ductility).

Both micrographs have the same amount of Cementite (no graphite!), around 6 vol-%. The pearlite lamellae are too small to see in some regions on the left.

Cementite + Bcc is a metastable equilibrium compared to Graphite + Bcc, but it is the equilibrium that will show up in normal circumstances.

Scheil Module

Solidification simulations

Equilibrium methods (lever-rule)

Solute diffusion is rapid, i.e. complete solute back diffusion \rightarrow uniform composition in both solids and liquid.

Non equilibrium methods (SCHEIL)

Negligible diffusion in solids, i.e. no solute back diffusion \rightarrow solids retain same composition through solidification.

Partial equilibrium methods/ Fast diffusing species

Complete interstitial but negligible substitutional solute back diffusion. No diffusion calculation – equilibration of chemical potential for fast diffusing species.

Back diffusion calculated in the Primary Phase

Scheil with a simultaneous diffusion calculation in the primary phase. Requires additional kinetic data and takes dendrite spacing and cooling rate into account.

Scheil with Solute Trapping

Intended for simulation of very fast cooling, e.g. during Additive Manufacturing. Requires assumption about scanning speed and angle.

Moving phase boundary methods (DICTRA)

Full integration of thermodynamics and kinetics in all phases. Requires additional kinetic database and takes dendrite spacing and cooling rate into account.

Scheil model

Assumptions in traditional Scheil:

- \Box Fast diffusion in liquid \rightarrow homogenous liquid
- $\hfill\square$ No diffusion in solid phases \rightarrow segregations in the solid

--- Average composition

Algorithm in traditional Scheil

Some Examples

T vs. fraction solid

Results from commercial Al-alloys

From: Saunders & Miedownik: "Calphad -a comprehensive review"

Algorithm in modified Scheil (partial eq.)

 ${}^{1}N_{i}^{S_{1}} {}^{1}N_{i}^{L}$ T_1 $\stackrel{1}{\overset{1}{\overset{}}} N_{C}^{S_{1}} \stackrel{1}{\overset{1}{\overset{}}} N_{C}^{L}$ T_2 T_3 3 ${}^{1}_{3}N^{S_{1}}_{C}{}^{2}_{3}N^{S_{1}}_{C}{}^{3}_{3}N^{S_{1}}_{C}{}^{2}_{3}N^{L}_{C}$ ${}^{1}N_{i}^{S_{1}} {}^{2}N_{i}^{S_{1}} {}^{3}N_{i}^{S_{1}} {}^{4}N_{i}^{S_{1}} {}^{1}N_{i}^{S_{2}} {}^{4}N_{i}^{L}$ T_{4} $\begin{array}{c} {}^{1}_{4}N_{C}^{S_{1}} {}^{2}_{4}N_{C}^{S_{1}} {}^{3}_{4}N_{C}^{S_{1}} {}^{4}_{4}N_{C}^{S_{1}} {}^{1}_{4}N_{C}^{S_{2}} {}^{4}_{4}N_{C}^{L} \\ {}^{1}_{4}N_{j}^{S_{1}} {}^{2}_{1}N_{j}^{S_{1}} {}^{3}_{1}N_{j}^{S_{1}} {}^{4}_{1}N_{j}^{S_{1}} {}^{1}_{1}N_{j}^{S_{2}} {}^{5}_{1}N_{j}^{S_{1}} {}^{2}_{1}N_{j}^{S_{2}} {}^{5}_{1}N_{j}^{S_{2}} {}^{5}_{1}N_{j}^{S_{2}}$ 5 T_5 ${}^{1}_{5}N_{C}^{S_{1}}{}^{2}_{5}N_{C}^{S_{1}}{}^{3}_{5}N_{C}^{S_{1}}{}^{4}_{5}N_{C}^{S_{1}}{}^{1}_{5}N_{C}^{S_{2}}{}^{5}_{5}N_{C}^{S_{1}}{}^{2}_{5}N_{C}^{S_{2}}{}^{5}_{5}N_{C}^{L}$

Translating the Scheil to Microstructure

Some results: Fe-10Cr-1C

Comparison of equilibrium, Scheil, and partial eq

Q. Chen & B. Sundman, Materials Transactions, 43(3)551(2002).

Freezing Range

Microsegregation

Scheil solidification simulation

Alloy composition:

Fe – 1.00% Mn - 0.40% Mo - 0.10% C - 0.90% Ni - 0.20% Si (wt-%)

□ Plot "mass fraction of solid" vs T and the segregation in the liquid.

□ C as fast diffusing element – or not? Will it make a difference?

Alloy composition:

Fe – 1.00% Mn - 0.40% Mo - 0.10% C - 0.90% Ni - 0.20% Si

🛕 File Tools Window Help	Thermo-Calc 2024a	×
Project 🗗 🖡	Configuration d	Visualizations
Project	Configuration Advanced Options Calculate from: Liquidus Gas Start temperature Calculate to: End of Scheil Temperature: 1600 Temperature step during Scheil: 1.0 Temperature unit: Celsius Composition unit: Mass percent Allow delta ferrite to austenite transition in steel: Calculation type: Calssic Scheil Scheil with back diffusion in primary phase Scheil with solute trapping Composition Mn Fast diffuser Composition C I Fast diffuser Composition C I Fast diffuser Composition Ni Set Fast diffuser 	Visualizations
	Composition Si ■ Fast diffuser ③ Help ■ ← Add Predecessor ► Perform Tree Create New Successor →	

Alloy composition:

Fe – 1.00% Mn - 0.40% Mo - 0.10% C - 0.90% Ni - 0.20% Si

Applied Example: Alloy design – duplex stainless steel

Alloy design example: Designing a duplex stainless steel for off-shore use.

- Based on a real example at Sandvik Steel, late 1980's.
- SAF 2507
- Said to be the world's first computer designed steel

Image from https://www.materials.sandvik/en/products/tube-pipefittings-and-flanges/

PRE-number for duplex stainless steel

- PRE (Pitting Resistance Equivalence) is an empirical measure for corrosion resistance in stainless steels.
- PRE can be defined as:
 PRE=w%Cr+3*w%Mo+16*w%N
- For duplex stainless steels, it is desirable to have a high and balanced PRE-numbers in ferrite and austenite.
- Approximate composition (weight-%):
 Fe (bal.) 25 Cr 7 Ni 4 Mo 0.3 Mn 0.3 Si 0.27 N 0.002 C

Effect of alloy elements on phase stability

- May be evaluated by entering variables which are derivatives
- The phase of interest with status fixed=0
- No condition for T

• Evaluate $\frac{\partial T}{\partial w(i)}$ by entering user defined variables $\frac{\partial T}{\partial w(i)}$

Syntax: T.w(Cr) equals
$$\frac{\partial T}{\partial w(Cr)}$$

Console mode

Using Console Mode

🛕 File Tools Window Help Thermo-Calc 2024a	- 🗆 X
Console 🗇 🔻	Console Results □ ∓
Console 1 🕀 🔲 ⊟	Kesults Console 1
Thermo-Calc / DICTRA Only for use at TCSAB Local contact Akes new laptop Ake Jansson SYS:? ABOUT HP_CALCULATOR SET_INTERACTIVE_MODE BACK INFORMATION SET_LOG_FILE CLOSE FILE MACRO FILE OPEN SET PLOT ENVIRONMENT	Plot 1 ⊕ □ ⊟
DISPLAY_LICENSE_INFO OPEN_FILE SET_TC_OPTIONS EXIT SET_COMMAND_UNITS SET_TERMINAL GOTO_MODULE SET_ECHO STOP_ON_ERROR HELP SET_GES_VERSION SYS:go data THERMODYNAMIC DATABASE module Database folder: C:\Program Files\Thermo-Calc\2024a\data Current database: Steels/Fe-Alloys v13.1	0.6 -
VA /- DEFINED DICTRA_FCC_A1 REJECTED TDB_TCFE13:sw tcal9 Current database: Al-Alloys v9.0	0.4 -
VA /- DEFINED TDB_TCAL9:	0.2 -
E Event I og	0.0 0.2 0.4 0.6 0.8 1.0

Modules in Thermo-Calc Console mode

Special modules in Console mode

These modules* are very automatic and after entering a few conditions, the calculation will start and end with a plotted diagram.

*) except REACTOR

Console Mode Macros

Text files with Console mode commands

□ Preferred file extension: .TCM

Can easily be produced from log-files (SET-LOG command) – or by rightclicking "Console 1" and opening "Command history"

□ Can be rewritten in a text editor.

Console	
Console 1 Command History	×
POLY version go dat POLY:s-co t=973 gst fedemo POLY:s-co w(mn) go pol POLY:c-e go pol Using global m c-e Calculated i-e POLY:l-e WVCS OUTPUT TO SCREE c Output from PC NONE	FE

$\mathsf{LOGFILE} \rightarrow \mathsf{MACROFILE}$

@@ Log file generated 2020-10-13 @@

go data switch tcni12 def-elements ni cr co al ti get-data go poly set-cond t=1000 n=1 p=1e5 w(co)=0.20 set-cond w(cr)=0.195 w(al)=0.4E-2 w(ti)=0.021 s-a-v 1 t 773.15 1773.15 10 step

NORMAL

post

set-diag-ax x t-c

set-diag-ax y vpv(*),,

plot,,

exit

set-echo

go data switch tcni12 def-elements ni cr co al ti get-data go poly set-cond t=1000 n=1 p=1e5 w(co)=0.20 set-cond w(cr)=0.195 w(al)=0.4E-2 w(ti)=0.021 s-a-v 1 t 773.15 1773.15 10

step NORMAL post set-diag-ax x t-c set-diag-ax y vpv(*),, plot,,

set-interact

Questions & Answers

Property Model Calculator

Property model calculator

- Calculation activity which allows users to predict and optimize properties of materials based on models.
- Thirteen general models have been introduced.
- Further models are in development.
- Different calculation types.
- Users can develop their own models based on python script.

	Proper	tv Model Calculat	or 1		
General Models	Composition unit Mass per	ent V			
Coarsening	Condition Definitions				
Columnar to Equiaxed Transition	Temperature Celsius	~ 1000.0			
Driving Force		11.12220			
Equilibrium	Timeout in minutes: 30	0			
Equilibrium with Freeze-in Temperature					
Interfacial energy	Calculation Type				
Phase Transition			~	~	
Scheil	🔵 Single 🕥 One A	kis 💿 Grid	O Min/Max	 Uncertainty 	O Batch
Spinodal	Crist D Surfaces				
T-Zero Temperature Viold Strength	Ghobelmillons				
ickel Models	Quantity		Min	Max	Number of ste
🗌 Antiphase Boundary Energy - Ni	1 Iemperature	~	500.0	3000.0	10
Coarsening Ni	① Temperature	~	500.0	3000.0	10
Solvus for Ordered Phase - Ni					
Strain-Age Cracking - Ni					
Steel Models					
Bainite					
CCI Diagram					
Ferrite					
Martensite Fractions					
Martensite Temperatures					
Martensitic Steel Strength					

Variation of A1 over a composition range

2

Composition of this steel:

Fe (bal.) + (in wt-%)

200 random samples, where 4 elements were varied: C Mn Si Cr

The other elements were constant at their nominal composition.

] Temperature	650.0	0
Composition C	0.6	.04
Composition Mn	0.75	.15
Composition P	0.005	0.0
Composition S	0.01	0.0
Composition Si	0.225	.075
Composition Cr	0.25	.05
Composition Ni	0.125	0.0
Composition Cu	0.2	0.0
Composition Mo	0.025	0.0
Composition V	0.015	0.0

Variation of A1 over a composition range - result

Configuration 리 무 ×	ि Results ये म X
Property Model Calculator 1	🚵 Plot Renderer 1 💩 Plot Renderer 3 💩 Plot Renderer 4 📥 Plot Renderer 5
Composition V 0.015	
Phase transition	
Configuration Description	
Matrix phase BCC_A2 v	
Phase to form FCC_A1 V	10.0 -
Condition to vary Temperature	
Search direction Positive V	
Calculation Type O Single One axis O Grid Min/Max O Uncertainty	8.0-
Sampling of Data from Gaussian Distributions	
Quantity Mean ∆ Min/Max	
I Temperature 650.0 0	
	ч – – – – – – – – – – – – – – – – – – –
	4.0
Composition Mo 0.025 0.0	204
Composition V 0.015 0.0	
Sampling Parameters	
Truncate distribution at 3 ÷ standard deviations	
Total number of samples 200	
Help < Add Predecessor Perform Tree Create New Successor >	A1 Temperature °C
	· · · · · · · · · · · · · · · · · · ·

Property Model Calculator result – Liquidus/(Solidus)

Property Model Calculator: Electrical resistivity, freeze-in temperature Step in temperature for Al-alloy AA4032.

Plot the Electrical resistivity. Heat treatment at 350 C.

General Models		Composition unit Mass percent ~	
 Crack Susceptibility Coefficient Driving Force Equilibrium Equilibrium with Freeze-in Temperature 		TemperatureCelsius20CompositionAI85.0CompositionSi12.2CompositionMg1.0CompositionNi0.9CompositionCu0.9	
Material Material name:		Timeout in minutes: 30.0 Equilibrium with Freeze-in Temperature Configuration Description	
UNS_A94032		Freeze-in-temperature 350.0	
Amount Mass	s percent V	Equilibrium above freeze-in temperature Evaluate for a single phase only Equilibrium minimization strategy Homogenization function Account for phase interface scattering Set reference temperature for technical CTE 20.0	ower Wiener bound)
Si	12.2	Define user functions	
Mg	1.0	Calculation Type	ncertainty 🔿 Batch
Ni	0.9	Grid Definitions	
	0.5	Quantity Min Temperature 20.0	Max Number of steps 350.0 30

Property Model Calculator result – Electrical resistivity, freeze-in

Steel Model Library

- Advanced models for formation of structures in steel.
- Introduced in 2019, martensite and pearlite models.
- Bainite and TTT-diagram model were added in 2021, CCT new in 2022.
- Other material specific property model libraries will be added in the future. Ni-library was new in 2022.

Steel Model Library

Fe (bal.) – 0.44 C – 1.7 Cr – 0.75 Mn - 0.26 Si – 0.09 V

Lequilitic Composition Fe 3 Equilibr Composition C 1 Interfac Composition Si 1 Liquidu Composition Si 1 Phase T Composition Mn 1 Spinod: Composition Cr 1 T-Zero Composition V 1 Nickel Moc Timeout in minutes: 30.0 1 Coarser Equilibr TTT Diagram 30.0 1 Steel Mode Configuration Description 1 CCT Dia Austenitic omposition from Austenitizing temperature Marten: Grain size [um] Calculation setting 1 Pearlite Ferrite selected Bainite selected Bainite selected Bainte selected Bainte selected Bainte selected Errite mode Pearlite mode Carbide in pearlite Carbide in pearlite Carbide in pearlite	40.70 1.44 1.26 1.75 1.7 1.09 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V V	× .	
Equilibr Composition C C Interfac Composition Si C Composition Si C C Spinod Composition Mn C Spinod Composition Cr C Vield St Composition V C Nickel Moc Timeout in minutes: 30.0 So.0 Antipla Timeout in minutes: 30.0 Coarser Steel Mode Configuration Description Cocription CCTDie Cotrical Austenite composition from Austenitizing temperature Marten: Grain size [um] Calculation setting Ferrite selected Bainite selected Marten: Grain size selected Bainite selected Ferrite mode Pearlite criterion Pearlite criterion Pearlite mode Carbide in pearlite Carbide in pearlite	1.44 1.26 1.75 1.7 1.09	Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	× ×	
Interfac Composition Si Image: Simode S	226 1.75 1.7 0.09	Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V		
Cityloidu Composition Mn Image: Composition Critical Spinodi Composition Critical Composition V Image: Composition Critical Steel Mode Timeout in minutes: 30.0 Image: Composition Critical Austenite composition Composition Critical Austenite composition from Areinte: Configuration Description CCT Diz Austenite composition from Areinitzing temperature Grain size [um] Calculation setting Pearlite Calculation setting Pearlite selected Bainite selected Beainite selected Ferrite mode Pearlite criterion Pearlite criterion Pearlite mode Carbide in pearlite Carbide in pearlite Carbide in bainite Carbide in baini	0.75 1.7 0.09	Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V		
Spinod Spinod Composition Cr Composition V Nickel Mod Antiph Coarser Equilibr Steel Mode Bainte CCT Dia Critical Austenite composition from Ferrite Marten Marten Pearlite Calculation setting V TIT Dia Ferrite selected Bainite selected Bainite selected Bainite selected Ferrite mode Pearlite criterion Pearlite criterion Pearlite mode Carbide in pearlite Carbide in pearlite Carbide in pearlite Steel Mode Configuration Description Description Configuration Description Description Configuration Description Configuration Description Configuration Description Configuration Description Configuration Description Configuration Description Configuration Description Pearlite composition from Pearlite selected Bainite selected Pearlite riterion Pearlite mode Carbide in pearlite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	>	
□ T-Zero Composition V □ Yield St Composition V Nickel Moc □ Timeout in minutes: 30.0 □ Coarser Equilibrit □ Coarser Equilibrit Steel Mode Configuration Description □ Critical Austenite composition from □ Ferrite Austenitizing temperature □ Marten: Grain size [um] □ Pearlite Calculation setting ♥ TTT Dia Ferrite selected □ Bainite selected Bainite selected □ Ferrite mode Pearlite criterion □ Pearlite in pearlite Carbide in pearlite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	×	
Vield St Composition V Nickel Moc □ Timeout in minutes: 30.0 Antipha □ Timeout in minutes: 30.0 Coarser □ Configuration Description Steel Mode Configuration Description CT Dia □ Configuration Description Critical Austenite composition from Perrite Austenitizing temperature Marten: Grain size [um] Pearlite Calculation setting ✓ TTT Dia Ferrite selected Bainite selected Bainite selected Ferrite mode Pearlite criterion Pearlite in pearlite Carbide in pearlite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	× 	
Antiphe Timeout in minutes: 30.0 Antiphe TIT Diagram Steel Mode Configuration Description CTT Diagram Configuration Description CTT Diagram Austenite composition from Critical Austenitizing temperature Marten: Grain size [um] Calculation setting Ferrite selected Pearlite Ferrite selected Bainite selected Ferrite selected Pearlite selected Ferrite mode Pearlite criterion Pearlite criterion Pearlite mode Carbide in pearlite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	~	
Coarser Equilibr Steel Mode Configuration Description Bainite Configuration Description Citical Austenite composition from Perrite Austenitizing temperature Marten: Grain size [um] Pearlite Calculation setting ✓ TIT Dia Ferrite selected Bainite selected Bainite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite Carbide in bainite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	~	
Equilibr TTT Diagram Steel Mode Configuration Description Bainite Configuration Description CTDia Austenite composition from Ferrite Austenitizing temperature Marten: Grain size [um] Pearlite Calculation setting ✓ TTT Dia Ferrite selected Bainite selected Bainite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite Carbide in bainite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	~	
Steel Mode Configuration Description Bainite Configuration Description CTDid Austenite composition from Ferrite Austenitizing temperature Marten: Grain size [um] Pearlite Calculation setting ITTDia Ferrite selected Bainite selected Bainite selected Pearlite reinter mode Pearlite mode Carbide in pearlite Carbide in bainite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	~	
○ CrT Dia Austenite composition from ○ CrT Dia Grain size [um] ○ Marten: Grain size [um] ○ Pearlite Calculation setting ○ TTT Dia Ferrite selected Pearlite selected Pearlite selected Bainite selected Ferrite mode Pearlite mode Carbide in pearlite Carbide in bainite Carbide in bainite		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	~	
 Critical Austenite composition from Ferrite Austenitizing temperature Grain size [um] Grain size [um] Calculation setting TTT Dia Ferrite selected Pearlite selected Bainite selected Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite 		Equilibrium composition at austenitizing temperature 1050.0 89.8 Custom V V	~	
 Ferrite Austenitizing temperature Grain size [um] Grain size [um] Calculation setting TTT Dia Ferrite selected Pearlite selected Bainite selected Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite 		1050.0 89.8 Custom V V	~	
Grain size [um] Marten: Pearlite Calculation setting ✓ TTT Dia Ferrite selected Bainite selected Martensite selected Martensite selected Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite		89.8 Custom V V	×	
Calculation setting Pearlite TTT Dia Ferrite selected Pearlite selected Bainite selected Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite		Custom V V V	~	
TTT Dia Ferrite selected Pearlite selected Bainite selected Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite				
Pearlite selected Bainite selected Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite				
Bainite selected Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite				
Martensite selected Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite		-		
Ferrite mode Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite				
Pearlite criterion Pearlite mode Carbide in pearlite Carbide in bainite		Faster start	~	
Pearlite mode Carbide in pearlite Carbide in bainite		Maximize growth rate	~	
Carbide in pearlite Carbide in bainite		Optimal pearlite	~	
Carbide in bainite		CEMENTITE	~	
18-12 - March Market Market Annual Charles and the Construction of the Construction of the Construction of the		CEMENTITE	~	
Use interpolation when necessary				
Interpolation error tolerance		0.1		
Maximum phase fraction change (abs	olute) in a time step	0.005		
Maximum phase fraction change (rela	tive) in a time step	0.05		
Error tolerance for austenite fraction		0.001		
Calculation Type				
Single One axis	Grid O Min/Mi	x OUncertainty OBatch		

Process Metallurgy Module

Process Metallurgy Module (PMM)

- Module for easy set-up of Steel-Slag-Gas equilibria.
- New in 2019.
- Designed for steel making and steel refining processes, BOF, EAF, LF and more.

		1									
Project	∂ Ŧ	Configuration									
My Projęct		Conditions O Kinetics	ptions) Process	simulati	on		Pi	rocess Metal	lurgy Calculator	1	
Process Metallurgy Calculator 1		Conditions Database: Thermal control: Temperature: Pressure:	TCOX12 Isotherm Celsius Pascal	v nal v	1700.0	00.0					
Plot Renderer 1		⊕ ⊖ Material:	Steel		~	User-defin	ed 🗸				
		Amount:	Tonne	•	~	50		∧ Hide 0	Composition		
		Input type:	Mass percent V Ele			Element	~	 Major component 		✓ Save Material	
		Major componen	t ⊕ ⊝	Fe	~	94,66737					
			$\oplus \Theta$	С	~	4.11					
			$\oplus \Theta$	Si	~	0.47					
			$\oplus \Theta$	AI	~	0.0034					
			$\oplus \Theta$	Mn	~	0.67					
			$\oplus \Theta$	P	~	0.0453					
			$\oplus \Theta$	S	~	0.0331					
			$\oplus \Theta$	0	~	0.00083					
			Total:			100.0					
		$\oplus \ominus$									
		Material: Slag	~	User-d	efined	\sim					
		Amount: Tonn	e 🗸	0.0		V Sł	now Compo	sition			
Scheduler	ā Ŧ										
🗘 Scheduled Jobs		Material: Gas		~	Use	r-defined 🗸					
		Amount: Tonn	e	~	0.0		✓ Sh	ow Composit	ion		
		Single	One	e Axis	Gr	id 🤇) Uncertain	ity			
		Grid Definitions									
		Quantity					Mir	i.	Max	Number of steps	
		Amount of Us	er-defined	(GAS)			~ 0.0)	1.0	10 🗘	

PMM Example Calculation of decarburization (steelmaking)

The hot metal from a blast furnace contains about 4.5 wt% Carbon. This makes it brittle and unsuitable for forging and rolling. The carbon content therefore needs to be reduced. This is termed steel-making and is mostly carried out in a converter (basic oxygen furnace, BOF) by blowing oxygen into the hot metal. The main reaction taking place is

Hot metal + $O_2(gas)$ = Steel + CO (gas)

This reaction is highly exothermic and results in a temperature increase in the converter from ~1450°C to over 1650°C.

During the blowing process other oxidizing reactions can take place. Some are desirable such as the oxidation of Phosphorous and removal from the hot metal

P (hot metal) + O_2 (gas) $\rightarrow P_2O_5$ (slag)

Other oxidation reactions are not desirable, such as the oxidation of the iron itself, that results in a reduced yield of the process:

Fe (hot metal) + O_2 (gas) \rightarrow Fe O_x (slag)

PMM Example 1 Calculation of decarburization EQUILIBRIUM

onditions Options						
Kinetics						
Equilibrium	O Process simulation					
Conditions Database:	TCOX9 v					
Thermal control:	Teathermal					
T-maximum control in						
remperature:						
Pressure:	Pascal V 100000.0					
00						
Material:	Steel V Steel_BOF V					
Amount:	Tonne v 100.0 Hide composition					
Input type:	Mass percent v Element v Save material					
Major component:	③					
	③ ⊜ S → 0.08					
	③ ⊖ P → 0.06					
	Total: 100.0					
a 🔿						
Maharial i	dea Doc					
Material:						
Amount:	Tonne V 3.0 A Hide composition					
Input type:	Mass percent V Component V Major component V Save material					
Major component:	○ ○ CaO ✓ 75.0					
	③					
	Total: 100.0					
00						
Material:	Gas V Oxygen V					
Amount:	Normal cubic meter V 1.0					
Input type:	Mass percent V Gas component V Save material					
Major component:	O2 < 100.0					
	Total: 100.0					
Calculation Type						
	One axis O Grid O Uncertainty					
◯ Single						
Single						
Single	Min May Number of stere					

Setting up equilibrium calculation

This assumes that all the oxygen added to the converter immediately reaches equilibrium with all the hot metal. This is certainly a simplification but important information about the reactions can be obtained.

1) Set-up and run equilibrium calculation as shown

	Y: Composition of phase group V Liquid metal V All elements V	
Amount of O	xygen (GAS) [Nm ³]	
Axis type:	Linear 🗸	
Limits:	0.0 to 1.0 step 0.1 Automatic scaling	
Mass compo	sition (Composition of phase group)	
Unit:	Mass percent v	
Axis type:	Logarithmic 10 $ ightarrow$	
Axis type: Limits:	Logarithmic 10 v 1.0E-6 to 10.0 step Automatic scaling	
Axis type: Limits:	Logarithmic 10 v 1.0E-6 to 10.0 step Automatic scaling	
Axis type: Limits:	Logarithmic 10 v 1.0E-6 to 10.0 step Automatic scaling X: Amount of Oxygen (GAS) [N v	
Axis type: Limits:	Logarithmic 10 v 1.0E-6 to 10.0 step Automatic scaling X: Amount of Oxygen (GAS) [N v Y: Composition of phase group v Liquid oxides v All components v	
Axis type: Limits:	Logarithmic 10 v 1.0E-6 to 10.0 step Automatic scaling X: Amount of Oxygen (GAS) [N v Y: Composition of phase group V Liquid oxides V All components v	
Axis type: Limits:	Logarithmic 10 v 1.0E-6 to 10.0 step Automatic scaling X: Amount of Oxygen (GAS) [N v Y: Composition of phase group v Liquid oxides v All components v X: Amount of Oxygen (GAS) [N v	

2) Experiment with various plots of the results:

Experiment with different calculations

- Adiabatic instead of Isothermal. For this the initial temperatures of the steel and slag will have to be set. Put both at 1450°C.
- b) Add Ot of slag. Note that this will result in no dephosphorization.

PMM Example 2 Calculation of decarburization PROCESS SIMULATION

Setting up equilibrium calculation

The aim of a process simulation is to describe the complete process:

- 1) Initial situation with cold scrap in the converter
- 2) Hot metal is poured onto the cold scrap
- 3) Oxygen lance is lowered and blows oxygen into the hot metal, at the same time scrap gradually melts

Thermo-Calc

Software

- 4) Slag formers are added to the converter
- 5) Aim is to find the final steel and slag composition and temperature

PMM Example 2 Calculation of decarburization PROCESS SIMULATION

	Process Metallurgy Calculator 1
Conditions Options	
Kinetics O Equilibrium Process simulation	
Conditions Database: TCOX10 V Temperature: Celsius V	
Time: Minutes V	
Process	
Name: BOF_kinetics	
Duration: 24	
Process model	
roolss hodel: BOF_Process Vodel	
Materials Process schedule 3	
Material: Steel V User-defined V with temperature: 0.0	
Added to: Zone V Steel V V S	how composition

The 3 steps for setting up a process simulation:

hermo-Calc

Software

- 1) Define kinetics of steel slag reactions.
- 2) Define materials to be used in simulation.
- 3) Define process schedule

Note: Calculation times for a full process simulation can be 30 min or more

Detailed description of simulations as video tutorials, pdfs and example files can be found under https://www.thermocalc.com/products-services/process-metallurgy-module/

PMM Example 2 Calculation of decarburization PROCESS SIMULATION

Some typical results of the simulation

Temperature increase in different zones of the converter during the oxygen blowing process

Fhermo-Calc

Software

Reduction in carbon content as the hot metal is transformed into steel

\rightarrow Much more and more detailed process information can be obtained...

Detailed description of simulations as video tutorials, pdfs and example files can be found under https://www.thermocalc.com/products-services/process-metallurgy-module/

Resources: Where to find Help

The Online Help

Use the Help menu or press F1. Help for all software and more.

Thermo-Calc Software	Thermo-Calc	Diffusion Module (DICTRA)	Precipitation Module (TC-PRISMA)	Databases	SDKs
Search					Q
You are here: <u>Thermo-Calc</u> > Welcome			0 • • /×		

welcome to the Thermo-Calc help

This help contains the same documentation that is also installed in folders with your software. The advantage is you can browse the menus and search for key words and phrases. Click the links below to learn about navigating the help and how to contact our offices.

When in Thermo-Calc, press <F1> on the keyboard to open this help. You can also open -0the documentation folder (which has all the PDFs) from the main menu in Thermo-Calc: Help → Manuals Folder.

- Search
- Browse
- . Software Updates
- Training and Contact Information
- Get started with About the Thermo-Calc Software

There are several resources available on our website to help you learn how to use Thermo-Calc and other Add-on Modules. Go to the Getting Started Guides page and choose one of the guides that provides new users an introduction to setting up simple calculations in Graphical Mode. The information there is also in this help documentation.

© 2024 Thermo-Calc Software AB. All Rights Reserved.

The Online Help

Below a search for "State variables" and then browsing among the search results.

Thermo-Calc Software	Thermo-Calc	Diffusion Module (DICTRA)	Precipitation Module (TC-PRISMA)	Databases	SDKs
Search					٩
You are here: <u>Thermo-Calc</u> > <u>Console Mode</u> > <u>Working in Co</u>	<u>nsole Mode</u> > Intensiv	ve Variables			

Intensive Variables

		as at 1				
1	Abbrev.	Unit	Descript.	Domain	Suffix	
	т1 К		Temperature	Sustem		
	T*	ĸ	lemperature	System		
	Р	Pa	Pressure	System		
			Comment	5		
	WU(comp)			Component	ĸ	
L		J/mol	Chemical potential	Constitution to a solution where		
	MU(sp,ph)*			Species relative to a solution phase	ĸ	
					2	
AC(comp)	AC(comp)			Component	R	
	2		Activity		-	
	AC(sp,ph) ²	N/A		Species relative to a solution phase	к	
a			A In(Activity)			
	LNAC (comp) ³			Component R		
	LNAC (sp,ph) ²			Species relative to a solution phase	R	

³ In natural logarithm (InAC=MU/RT)

phases).

Settings

Tools -> Options

🛕 Options						×
General Graphical Mode Console Mode						
Tooltips enabled						
Localization:	English 🗸					
Look and feel:	Light V					
Log level:	l Debug	Info	Warning	Error		
Database directory:	C:\Program Files/The	ermo-Calc/2024a\data	1		Modify	
Model directory:	C:\Program Files/The	ermo-Calc/2024a\Pro	pertyModels		Modify	
Temporary directory:	C:\Users\ake\AppDa	ta\Local\Temp\			Modify	
Property model Python interpreter:	C:\Program Files\The	Modify				
Check update interval:	Do not check \vee					
Preferred Gibbs Energy System:	🔘 Version 5 🧿 Vers	sion 6				
Reset all settings and the database cache to defaults:	Factory reset					

Settings

Tools -> Options -> Graphical mode

🛕 Option	ıs							×
General	Graphical Mode	Console Mode						
Activities	Default Units							
De De	fault Configurations	Calculate to:	End of Scheil	O Temperature	e below solidus			
ļm	System definition	Start temperature:	2226.85					
I	Calculation	Temperature step during Scheil:	1.0					
P ==	Precipitation	Cooling rate:	1.0	K/s				
		Secondary dendrite arm spacing:	Calculated	✓ c: 5.0E-5	n: 0.33	5E-5	m	
	Diffusion	Scanning speed:	1.0	m/s				
	Scheil	α:	45.0	degrees				
	Process Metallurgy							
~	Plotting	Global minimization: 🗹						
Ē	Tabulation	Global test interval:	10 🛇					
		Calculate evaporation properties:						
		Max no. of iterations: 500						
		Required accuracy: 1.0E-6						
		Smallest fraction: 1.0E-12						
		Approximate driving force for me	tastable phases:					
		Include one axis equilibrium calcu	lation: 🔽					
		Temperature below solidus setting	s: No of points:	50	Final temperature:	Room temperature	~ 25.0	
								OK Cancel

Settings

Same "Options" windows can also be reached from inside each activity.

Open Project	Configuration		∂ Ŧ
openningeet	Conditions Functions Options	Equilibrium Calculator 1	
	Single Equilibrium and Grid		
My Project System Definer 1	 Global minimization Max grid points Coarse 2000 Approximate driving force for metastable phases Force positive definite phase Hessian Control step size 	Max no. of iterations: 500 🗇 Required accuracy: 1.0E-6 Smallest fraction: 1.0E-12	
Equilibrium Calculator 1 Table Renderer Equilibrium Calculator 2 Plot Renderer 1	One Axis Global minimization Global test interval Every 10th eq 10 🗘	Phase Diagram Global minimization Global test interval At node points Generate starting points automatically Use inside meshing points No. of meshes along an axis: 3	

Questions & Answers

The End

Please take a few minutes to fill out the anonymous Course Evaluation. Link here:

https://www.surveymonkey.com/r/F3BBQMN

(If you have filled out this survey before 09:00 this morning you will have to do it again.)

The End

We will send a certificate of course completion electronically just after all three online courses are finished.

Send your name and affiliation to <u>ake@thermocalc.se</u> if you are uncertain if we have it correctly.