

Thermo-Calc On-line Training April 9 - 11 2024

Åke Jansson, Shan Jin, Johan Bratberg, Carl-Magnus Lancelot, Nicholas Grundy

www.thermocalc.com

Schedule

Thermo-Calc Day 1

9:00	S-Eq 1: Stainless steel 2205.
------	-------------------------------

- 9:30 Introduction to Thermo-Calc and CALPHAD-based software tools.
- 10:00 S-Eq 2: Ni superalloy CSMX-2.
- 10:25 Q & A
- 10:40 S-Eq 3: Stable and metastable phases in Al-Cu.
- 11:00 Step 1: Ni alloy Nimonic 263.
- 11:25 Step 2: Slag calculation, changing components.
- 11:45 Q & A
- 12:00 Handing out home assignment.

S-Eq = Single-Equilibrium Calculation

Step = One-axis Step Calculation

Schedule

Thermo-Calc Day 2

- 9:00 About the home assignment.
- 9:10 Thermodynamic Databases.
- 9:30 Step 3: Al alloy 6053
- 9:55 Map 1: Phase diagram for a cemented carbide.
- 10:25 Q & A
- 10:40 Map 2: HEA phase diagram.
- 11:05 Map 3: Phase diagram from base material to weld.
- 11:40 Q & A
- 11:55 Handing out home assignment.

Step = One-axis Step Calculation

Map = Phase diagram mapping, 2 axes or more.

Schedule

Thermo-Calc Day 3

- 9:00 About the home assignment.
- 9:10 Scheil solidification simulation.
- 9:40 App1: Alloy design, duplex stainless steel.
- 10:20 Demo of console mode.
- 10:30 Q & A
- 10:45 Property Model Calculation.
- 11:15 Process Metallurgy Module Calculation.
- 11:35 Resources for help.
- 11:45 Q & A
- 12:00 End.

App = Thermo-Calc calculation applied to a real case.

Download

https://download.thermocalc.com/courses/TC-Day1/

S-Eq1-Stainless2205.tcu	14K
S-Eq2-Ni-alloy-850.tcu	19K
<u>S-Eq3-AlCu-precipitates.tcu</u>	50K
Step1-Nimonic263.tcu	51K
Step2-slag.tcu	31K
TC-Day1.pdf	7.5M

Software Installation

For those of you also joining DICTRA/TC-Prisma:

The software installation and license file you have are valid for all software and for the duration of all courses.

Overview of Thermo-Calc 2024a

Using Console Mode

EventLog

Graphical mode - GUI Layout

- 1. Project window shows relations between defined activities
- 2. Configuration window for configuring the selected *activity*
- 3. Results window graphic and text output
- 4. Scheduler window shows performed and scheduled calculations
- 5. Event log window text output of progress

Getting Started

"Quick Start"

Step-by-step instructions for some common tasks

"Templates" Sets up the framework for certain specific tasks

GUI layout

Single Point Equilibrium Calculations

Single Equilibrium Calculations

p					Results:
System					
Moles	1.00000				
Mass	55.24126	[g]			
Temperature	1273.15000	[K]			Thermodynamic Properties:
Total Gibbs Energy	-67901.58065	[]]			inclined ynamie i roperties.
Enthalpy	38263.15388	[]]			
Volume	7.34999E-6	[m3]			Gibbs Energy
Component	Mole Fraction	Mass Fraction	Activity	Potential	
Ni	0.10354	0.11000	0.00016	-92477.97589	——— Enthalpy
Cr	0.23373	0.22000	0.00323	-60712.81918	
Fe	0.66273	0.67000	0.00185	-66597.42065	Activities
Stable Phases					
	Moles	Mass	Volume Fraction		
BCC_A2#1	0.07880	4.31311	0.07968	Composition 🗸	
Composition					Dhasa Data
Component	Mole Fraction	Mass Fraction			Phase Data:
Fe	0.61718	0.62968			
Cr	0.32829	0.31184			Equilibrium amounts
Ni	0.05454	0.05847		4	
	Moles	Mass	Volume Fraction		Equilibrium compositions
FCC_A1#1	0.92120	50.92814	0.92032	Composition 🗸	Equilibrium compositions
Composition					
Component	Mole Fraction	Mass Fraction			
Fe	0.66663	0.67341			
Cr	0.22564	0.21222			The recults are viewed in
Ni	0.10773	0.11436			me results are viewed in
					the Table Renderer.

General work flow

S-Eq 1: Heat treatment of duplex stainless steel 2205 at 1050 °C.

Single Equilibrium, Example 1

Duplex 2205 – Fe - 22Cr – 5 Ni – 0.02C – 1.8Mn – 2.5Mo – 0.1N (wt-%)

Temperature: 1050°C (typical solution annealing temp)

Bramfitt, Bruce L., and Arlan O. Benscoter. *Metallographer's guide: practice and procedures for irons and steels*. Asm International, 2001.

Use the "Quick Start" wizard

Calculate the equilibrium state for a steel under the following conditions:

- Duplex 2205 Fe 22Cr 5 Ni 0.02C 1.8Mn 2.5Mo 0.1N [mass-%] at 1050°C (typical solution annealing temp)
- A system size of 1 mole and atmospheric pressure is assumed

🖞 🛕 File Tools Window Help	Thermo-Calc 2023b							-	\Box ×
Project Ø ¥ Configuration		di ∓	Visualizations						o ₹
	My Project		Table Renderer 1						
Getting Started									
			System Moles	1.00000					
My Project			Temperature	1323.15000	[g] [K]				
Quick Start Gotting Started	Video Tutorials Online Help Example Files		Total Gibbs Energy	-72412.25629	[J]				
			Volume	7.45647E-6	[m ²]				
System Definer 1			Component	Mole Fraction	Mass Fraction	Activity	Potential		
			C	0.00092	0.00020	0.00038 2.59050E-7	-86626.06816		
			Mn	0.01816	0.01800	0.00002	-1.19837E5		
Equilibrium Calculator 1	Ternary		Mo	0.01445	0.02500	0.00037	-87043.03661		
Single Point One Axis	Material to Material Phase Diagram		Cr	0.23455	0.22000	0.00229	-66869.27214		
- A			N	0.04/23	0.05000	0.00008	-1.03120E5		
Table Dandaras 1			re	0.00074	0.06560	0.00172	-10041.35522		
Non-Equilibrium			Stable Phases						
Ó N	\sim \overline{D}		BCC 42#1	Moles	Mass	Volume Fraction	Commission		
Scheduler () * Scheduled Jobs Scheduled Jobs Property Models	Diffusion Precipitation		Composition Component Fe Cr Ni Mo Mn N C	Mole Fraction 0.67014 0.25787 0.03610 0.01752 0.01677 0.00110 0.00048	Mass Fraction 0.67340 0.24126 0.03813 0.03025 0.01658 0.00028 0.00010				
			FCC_A1#1	Moles 0.45168	Mass 24.96093	Volume Fraction 0.44840	Composition	~	
Applications Process Metallurgy Additive Manufact	ring With Material Library		Composition Component Fe Cr Ni Mn Mo N C	Mole Fraction 0.69360 0.20623 0.06073 0.01985 0.01071 0.00742 0.00146	Mass Fraction 0.70094 0.19404 0.06449 0.01973 0.01859 0.00188 0.00032				
🗷 Help 📋	← Add Predecessor ► Perform Tree Create New Activity →								
E Event Log			L						

A Thermo-Calc								_				
File Tools Window Help												
New Open Save Apply Auto Layout Snap to Grid Show Grid Switch to Console Mode												
Project a 4 ×	Configuration					급 후 ×	Results					0
				🔚 Equilibrium Calculat	or 1		Table Renderer 1					
	Conditions Functions C	Options					Sustam					
My Project	Composition unit Mass pe	ercent 🚽				Switch to advanced mode	Moles	1.00000				
	Constition Definitions					Sincer w davanced mode	Mass	55.55397 1273 15000	[Gram] [Kelvin]			
System Definer 1	Temperature	Celsius	- 1000.0				Total Gibbs Energy	-67418.9098	[Joules]			
	Pressure	Pascal	• 101325.0				Enthalpy Volume	38735.55091 7.41634E-6	[Joules] [Cubic centimeter]			
Equilibrium Calculator 1	System size	Mole	• 1.0				Component	Mole Fraction	Mass Fraction	Activity	Potential	
	Composition	Cr	22,0				Fe	0.68996	0.69360	0.00011	-96948.27270 -65816.99478	
Table Renderer 1							Cr	0.23505	0.22000	0.00272	-62531.79017	
	Composition	Mo	3.0				Mo	0.01737	0.03000	0.00057	-79110.02487	
	Composition	N	0.14				Stable Phases	Molec	Macc	Volume Fraction		
	Compatible	r-					BCC_A2#1	0.45366	25.31316	0.45752	Composition	
	Composition	re	69.36				Composition					
	Axis Definitions						Component	Mole Fraction	Mass Fraction			
	Quantity	Min	Max	Step Division Type			Ni	0.03700	0.03892			
	Temperature [Celsi	us] - 500.0	3000.0	50.0 Linear - no. of st	eps 🚽 Normal	<u>+</u>	Cr	0.26050	0.24275			
	Temperature [Celsi	us] - 500.0	3000.0	50.0 Linear - no. of st	eps 🚽 Normal	v]	N	0.00069	0.00017			
							MO	0.02190	0.03763			
Scheduler D L X							FFF 41#1	Moles	Mass	Volume Fraction	1	-
Scheduled Jobs							RCC_AI#I	0.54054	30.24081	0.54246	composition	•
							Composition					
							Ni	0.06457	Mass Fraction 0.06846			
							Fe	0.69831	0.70456			
							Cr	0.21392	0.20095			
							Mo	0.01361	0.02360			
								14-1		Volume Desetter		
							FCC_A1#2	0.00000E0	0.00000E0	0.00000E0	Composition	
							Composition					
							Component	Mole Fraction	Mass Fraction			
							Fe	0.69831	0.70456			
							Cr	0.21392	0.20095			
							N Mo	0.00959	0.00243			
		0		Add Predecessor	Create New Successor	>						
					110		U					

Event Log

A Thermo-Calc											
File Tools Window Help											
New Open Save Apply Auto Layout Snap to Grid Show Grid Switch to Console Mode											
Project 🗗 🕂 🛪	Configuration				ə ع ×	Results					급 # ×
			🐴 Equilibrium Calculator	1		Table Renderer 1					
-	Conditions Functions Op	tions				System					
My Project	Composition unit Mass per	cent 👻		Switch	h to advanced mode	Moles	1.00000	[Gram]			
Page 1	Condition Definitions			A		Temperature	1273.15000	[Kelvin]			
System Definer 1	Temperature	Celsius 👻 1000.0]			Total Gibbs Energy Enthaloy	-67418.90987 38735.55091	[Joules]			
	Pressure	Pascal - 101325.0	1			Volume	7.41634E-6	[Cubic centimeter	1		
Equilibrium Calculator 1	System size	Mole - 1.0				Component	Mole Fraction	Mass Fraction	Activity	Potential	
	Comparison	C. 22.0	1			Ni	0.05206	0.05500	0.00011	-96948.27270 -65816 99478	
Table Renderer 1	Composition	22.0	<u>]</u>			Cr	0.23505	0.22000	0.00272	-62531.79017	
	Composition	Ni 5.5				Mo	0.00555	0.00140	2.75023E-7 0.00057	-1.59911E5 -79110.02487	
	Composition	Mo 3.0]			Stable Dhacer					
	Composition	N 0.14				Stable Phases	Moles	Mass	Volume Fraction		
	Composition	Fe 69.36				BCC_A2#1	0.45366	25.31316	0.45752	Composition 🗸	
	Axis Definitions					Composition	Mala Eraction	Mass Eraction			
	Quantity	Min Max	Step Division Type			Ni	0.03700	0.03892			
	Temperature [Celsius	s] - 500.0 3000.0	50.0 Linear - no. of step	s + Normal +		Fe	0.67991	0.68050			
	Temperature [Celsiu:	s] = 500.0 3000.0	50.0 Linear - no. of step	s + Normal +		N	0.00069	0.00017			
			/ Landson / Land			Mo	0.02190	0.03/65			
Scheduler D + X						FCC A1#1	Moles 0.54634	Mass 30, 24081	Volume Fraction	Composition	
Difference Scheduled Jobs							0101001	5012 1001	010 12 10	(composition +	
						Composition Component	Mole Fraction	Mass Fraction			
						Ni	0.06457	0.06846			
						Cr	0.21392	0.20095			
My Project						N Mo	0.00959	0.00243			
my roject											
						FCC_A1#2	0.00000E0	0.00000E0	0.00000E0	Composition	
	hand .					Composition					
	™		<u> </u>			Component	Mole Fraction	Mass Fraction			
System	Definer 1					e	0.06457	0.06846			
Oysten	i Denner i			l "activit	inc"	r	0.21392	0.20095			
	-			αιινι	162	lo	0.01361	0.02360			
Equilibrium	o Colculat	or 1									
Equilibriu	n Calculat	01 1									
Table	Dendever	4	Add Predecessor Perform	Create New Successor >							
	kenderer :					1.64					

System					
Moles	1.00000				
Mass	55.55397	[Gram]			
Temperature	1273.15000	[Kelvin]			
Total Gibbs Energy	-67418.90987	[Joules]			
Enthalpy	38735.55091	[Joules]			
Volume	7.41634E-6	[Cubic centimeter]			
Component	Mole Fraction	Mass Fraction	Activity	Potential	
Ni	0.05206	0.05500	0.00011	-96948.27270	
Fe	0.68996	0.69360	0.00199	-65816.99478	
Cr	0.23505	0.22000	0.00272	-62531.79017	
N	0.00555	0.00140	2.75023E-7	-1.59911E5	
Мо	0.01737	0.03000	0.00057	-79110.02487	
Stable Phases					
	Moles	Mass	Volume Fraction		
BCC_A2#1	0.45366	25.31316	0.45752	Composition	3
Composition					
Component	Mole Fraction	Mass Fraction			
Ni	0.03700	0.03892			
Fe	0,67991	0,68050			
Cr	0,26050	0.24275			
N	0.00069	0.00017			
Mo	0.02190	0.03765			
	Males	Mass	Volume Fraction		
FCC_A1#1	0.54634	30.24081	0.54248	Composition	
Composition					
Component	Mole Fraction	Mass Fraction			
Ni	0.06457	0.06846			
Fe	0,69831	0.70456			
Cr	0,21392	0,20095			
N	0.00959	0.00243			
Mo	0.01361	0.02360			

Introduction to Thermo-Calc and CALPHAD-based software tools

Our field of operation

Towards prediction of microstructure evolution and material properties

The development of consistent databases where each phase is described separately using models based on physical principles and parameters assessed from experimental data is a key.

What is CALPHAD?

A phase based approach to modeling the underlying thermodynamics and phase equilibria of a system through a self consistent framework that allows extrapolation to multicomponent systems.

Captures the composition, temperature and pressure dependence.

A journal published quarterly by Elsevier Ltd.

An international community, and conference held each year with 150-300 active participants from around the world.

The National Academies Press, 2008

"Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security"

Moving beyond Materials Discovery...

ICME: an approach to design products, the materials that comprise them, and their associated materials processing methods by linking materials models at multiple length scales.

Towards ICME:

Thermo-Calc Software AB

Thermo-Calc Software AB was founded in 1997 and originates in research that had been made at the Royal Institute of Technology, Stockholm, Sweden.

Sandvik and Nippon Steel are early adopters of these research tools in the mid 1980's.

A classic example from 1985 – SAF 2507

The company's mission is to further develop and extend these tools in order to meet today's and future needs.

Products and Services

Software maintenance and support

- Thermo-Calc (1984) DICTRA (1992) TC-PRISMA (2011) Software Development Kits
- Thermodynamic and Mobility databases
- Project work and consulting

Training

Developing Integrated Codes

Developing Integrated Codes

CALPHAD Background

- CALPHAD based tools lie at the nexus of composition, temperature, property relationships.
- Phase based approach to modeling the composition/temperature dependence on Gibbs Energy
- Self-consistent framework allows for extrapolation into multi-component space, to explore what happens with real alloys, or to help guide development of new ones

G(p,T) = H - TSGibbs Free Energy $\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$ Ficks Laws of Diffusion

$$\Delta G = \frac{4}{3}\pi r^3 \Delta g + 4\pi r^2 \sigma$$

Classical Nucleation Theory

To use this approach, need to describe G, and D! (and σ and molar volume as well) – for each phase as a function of composition/temperature (CALPHAD Database)

Software + Databases

Minimization of the total Gibbs free energy under given conditions.

$$G = \sum_{\phi} N^{\phi} G_{m}^{\phi} (T, P, x_{i}^{\phi})$$
$$\frac{\partial G}{\partial x_{i}^{\phi}} = 0$$

DICTRA

1-D diffusion simulation – Numerically solve diffusion equations

$$\frac{\partial \mathbf{c}}{\partial t} = -\frac{\partial}{\partial z} \left(\mathbf{J} \right) \text{ where } \mathbf{J} = -\mathbf{D} \frac{\partial \mathbf{c}}{\partial z}$$

Mean field precipitation simulation – using LS (Langer-Schwartz) and KWN (Kampmann and Wagner Numerical) Approach

Continuity equation

$$\frac{\partial f(r,t)}{\partial t} = -\frac{\partial}{\partial r} [\upsilon(r)f(r,t)] + f(r,t)$$

$$C_0^{\alpha} = C^{\alpha} + \left(C^{\beta} - C^{\alpha}\right) \int_0^{\infty} \frac{4\pi}{3} f(r,t) r^3 dr$$

Mass balance

What can we calculate, predict, simulate?

Thermo-Calc

- Stable/Metastable
 Equilibria
- Amount and composition of phases
- Transformation temps (liquidus, solidus, A1, A3, solvus etc)
- Density/Thermal expansion
- Solidification, segregation
- Enthalpy, heat capacity, latent heat etc.
- Phase diagrams
- (Thermo-)physical properties.

- Carburizing and decarburization
- Microsegregation during solidification
- Homogenization treatment
- Precipitate growth and dissolution
- Precipitate coarsening
- Interdiffusion in coating/substrate systems
- TLP bonding of alloys (brazing)

- Particle Size Distribution
- Number Density
- Average Particle Radius
- Volume Fraction
- TTP/CCT
- Average Compositions
- Interface Compositions
- Nucleation Rate
- Critical Radius

Thermo-Calc

Result

Description of Gibbs free energy for the individual phases

 $G_m^{\phi}(T, P, x_i^{\phi})$

Minimization of the total Gibbs free energy under given conditions.

()

 $\frac{\partial G}{\partial x^{\phi}}$

$$G = \sum_{\phi} N^{\phi} G_m^{\phi} \left(T, P, x_i^{\phi} \right)$$

Thermo-Calc

Example of functionality

- Calculating stable and meta-stable heterogeneous phase equilibrium
- □ Amount and composition of phases
- Transformation temperatures, e.g. liquidus and solidus temperature
- □ Predicting driving forces for phase transformations
- Phase diagrams (binary, ternary, isothermal, isoplethal, etc.)
- □ Molar volume, density and thermal expansion
- □ Physical properties, e.g. viscosity, thermal conductivity
- **Gamma** Scheil-Gulliver (non-equilibrium) solidification simulations
- □ Thermochemical data such as;
 - enthalpies
 - heat capacity,
 - activities, etc.
- □ Thermodynamic properties of chemical reactions
- And much more....

Photo: Stig-Göran Nilsson (2002)

- Design and optimization of alloys
- Design and optimization of processes
- Analyze and gain understanding of problems

....

Fundamental types of calculations

Output from POLY-3 Tue Aug 08 2006 11:41:39

Database: TCFE3

Conditions:

T=1000, P=1E5, N=1, W(C)=2E-2, W(CR)=0.1, W(MN)=3E-2, W(NI)=1E-2 DEGREES OF FREEDOM 0

Temperature 1000K (727C, 1340F), Pressure 1.000000E+05 Number of moles of components 1.00000E+00, Mass 5.16905E+01 Total Gibbs energy -4.42393E+04, Enthalpy 2.56582E+04, Volume 5.22429E-06

Componen	nt Moles	W-Fraction	Activity	Potential	Ref.State
C CR FE MN NI	8.6072E-02 9.9412E-02 7.7748E-01 2.8227E-02 8.8074E-03	2.0000E-02 1.0000E-01 8.4000E-01 3.0000E-02 1.0000E-02	8.9724E-02 4.4290E-04 6.0347E-03 4.6517E-05 3.3158E-05	-2.0046E+04 -6.4206E+04 -4.2489E+04 -8.2943E+04 -8.5758E+04	SER SER SER SER SER
FCC A1#1	STATUS ENTERE	D Drivin	g force 0.0000E+00		

Number of moles 7.5868E-01, Mass 4.1735E+01 Mass fractions: FE 9.44835E-01 CR 1.41596E-02 C 3.93605E-03 MN 2.47653E-02 NI 1.23038E-02

 FCC_A1#2
 STATUS ENTERED
 Driving force
 0.0000E+00

 Number of moles
 0.0000E+00, Mass
 0.0000E+00
 Mass
 fractions:

 FE
 9.44833E+01
 CR
 1.41596E+02
 C
 3.93605E+03

 MN
 2.47653E+02
 II.22038E+02

M7C3#1 STATUS ENTERED Number of moles 2.4132E-01, Mass 9.9559E+00 Mass fractions: CR 4.59839E-01 C 8.73393E-02 FE 4.00536E-01 MN 5.19435E-02

Diffusion module (DICTRA)

- Carburizing and decarburization
- Microsegregation during solidification
- Homogenisation treatment
- Precipitate growth and dissolution
- Precipitate coarsening
- Interdiffusion in coating/substrate systems
- TLP bonding of alloys and much more...

Ball screw for the Airbus A380 aircraft: a martensitic as carburized stainless steel

Example: Simulation of carbon evolution in high alloyed steels by Aubert & Duval, France.

Precipitation module (TC-PRISMA)

- Simulate concurrent nucleation, growth and coarsening of second phases in multicomponent systems.
- Integrated directly with Thermo-Calc and the Diffusion module (DICTRA).

Software Development Kits (SDKs)

TC-Python / TQ-interface / TC Toolbox for Matlab[™]

Thermo-Calc

A prescribed set of subroutines, functions or classes by which a programmer writing an application program can make requests to Thermo-Calc.

The trend is towards more and more advanced applications and <u>in particular integration</u> of thermodynamic calculation result for modelling of microstructure evolution and <u>property prediction</u>, aiming at designing products including the materials they consist of and their associated processing.
Databases

Thermo-Calc Software

A database in our understanding means a collection of polynomials describing some property for the individual phases of a system, as a function of temperature, (pressure) and composition.

Thermodynamic data

 \Rightarrow All our software tools

- Gibbs free energy, i.e. $G_m^{\phi} = f(T, P, x_i^{\phi})$

Kinetic data

 \Rightarrow DICTRA, TC-PRISMA, (TC-API's)

- Atomic mobility

Property data

- Molar volume

- Interfacial energies

 \Rightarrow TC, TC-PRISMA, (TC-API's)

 \Rightarrow TC-PRISMA

Available Thermodynamic Databases

A wide range of thermodynamic databases are available for:

- Steels and Fe-alloys
- Nickel-base superalloys
- □ Al-/Ti-/TiAl-/Mg-/Cu-/Zr-alloys
- □ High Entropy alloys (HEA)
- □ Noble metal alloys, Solder alloys
- Electronic materials, magnetic materials, ultra-pure Si-alloys
- Gases, pure inorganic/organic substances and general alloys
- □ Slag, metallic liquids and molten salts
- Ceramic systems, hard materials, ultra-high temperature alloys
- □ Materials processing, process metallurgical and environmental aspects
- Aqueous solutions, materials corrosion and hydrometallurgical systems
- □ Minerals and geochemical/environmental processes
- □ Nuclear materials and nuclear fuel/waste processing

Available Kinetic Databases

-1200

-800

-400

)0 0 4 Distance (μm) 800

1200

400

et al, Trans. Jpn. Inst. Met. **21**(1980), p. 601.

Customers

Industry

- Steel and metal producing companies
- Manufacturing companies
 - o Automotive
 - Electronics and semi-conductors
 - Aerospace & defense
 - o Industrial equipment
 - Naval, maritime
 - Consumer goods
- Energy & environment
- Consulting services
- Governmental labs

Examples with application to the materials life cycle

To provide computational tools in the field of materials engineering that allow for faster, cheaper and more sustainable innovation, development and production of both materials and components.

R&D Alloy Design

Ascertaining the Influence of Alloying Elements

Example: Influence on Chromium solubility when replacing V with Nb

V + Nb = constant = 5.27 at. %

Metallurgical Extraction

Several examples, e.g.

- Controlling and designing slag systems
- □ Interaction between slag and liquid metal
- □ Influence of an external pressure
- The Process Metallurgy Module

Casting

Thermo-Calc can be used to generate data to input into casting codes

- □ Solidus/liquidus temperatures
- □ Fraction solid curve
- □ Specific heat
- □ Thermal expansion coefficients
- Density / Molar volume
- □ Viscosity of Liquid phase

These quantities can of course also be used inside Thermo-Calc itself, see next page.

Casting

Example: Predicting cast shrinkage for Al alloys

Calculated molar volumes of the Al-X (X=Li, Mg, Si, Zn) fcc_A1 phase The effect of Si content on the densities of Al-Si alloys

Heat Treatment

Applications to a wide range of heat treatment related simulations, for instance:

- Equilibrium between alloy and gas phase as a function of temperature and composition
- Predict formation of phases / volume-fractions etc.
- Gas phase reactions, gas speciation
- Oxide scale formation

Decomposition of Acetylene at 10 mbar

Phases in stainless steel

Heat Treatment

TC-PRISMA simulation of precipitation kinetics of M23C6 in AISI 316

Heat Treatment

Oxide scale formation at 900 °C on a steel with 17.8% Mn, 9.5% Cr, 1.0% Ni and 0.27% C

Below the outer scale (rich in corundum) an Fe-Mn rich spinel is formed and next to the substrate a layer with halite and a Cr-Mn rich spinel, which is verified experimentally in the work by Douglas et al [1].

[1] D. L. Douglas, F. Gesmundo and C. De Asmundis, Oxidation of Metals, Vol. 25, 1986, pp. 235-268.

Forging/Rolling

Examples of use related to forging/rolling of metals e.g.

Selecting optimum temperature for operation

Safe forging of super-martensitic stainless in γ -field

Courtesy André Costa e Silva

Joining/Welding

Examples in this category include e.g.

- □ Modifying the flux compositions to lower liquidus
- Predicting intermixing between alloy and filler material
- Looking at the influence of alloy additions to welded material microstructure

Uncertainty / Sensitivity analysis

Configuration 🗗 🕂 🗙	ि म X
Property Model Calculator 1	🚵 Plot Renderer 1 💩 Plot Renderer 3 💩 Plot Renderer 4 🖾 Plot Renderer 5
Composition V 0.015	12.0
Phase transition	Data Distribution
Configuration Description	
Matrix phase BCC_A2 ~	10.0-
Phase to form FCC_A1 V	
Condition to vary Temperature 🗸	
Search direction Positive	
Calculation Type	
◯ Single ◯ One axis ◯ Grid ◯ Min/Max	8.0
Sampling of Data from Gaussian Distributions	
Quantity Mean Δ Min/Max	
l'Imperature 650.0 0	
Composition C 0.6 .04	
Composition Mn 0.75 .15	μ
Composition P 0.005 0.0	
Composition S 0.01 0.0	
Composition Si 0.225 .075	4.0
Composition Cr 0.25 .05	
Composition Ni 0. 125 0.0	
Composition Cu 0.2 0.0	
Composition Mo 0.025 0.0	2.0-
Composition V 0.015 0.0	
Sampling Parameters	
Truncate distribution at 3 + standard deviations	
Total number of samples 200 ≑	
	/U/ 708 709 710 711 712 713 714 715 716 717
Help < Add Predecessor Perform Tree Create New Successor >	

Corrosion

These tools have also been applied to model different types of corrosion in alloys:

- □ High-temperature oxidation
- □ Salt corrosion
- Aqueous corrosion

Pourbaix diagram for heterogeneous interaction

between 0.001 m of steel [Fe-5Cr-5Ni mole%] and 1 kg of water (and with 3 m NaCl), at 200 °C and 100 bar.

S-Eq 2: $\gamma + \gamma'$ in Ni Superalloy CMSX-2 at 850°C.

Some definitions

- **System:** The region of interest which can be closed or open to the exchange of matter, heat and work to its surroundings.
- **Phases:** A region in the system which is uniform in composition and temperature at equilibrium and has the same structure everywhere.

Equilibrium State: A state stable against internal fluctuations in a number of variables.

- **Gibbs Phase Rule:** States that the number of degrees of freedom in a system is equal to the number of components in the system minus the number of stable phases plus 2 (temperature and pressure).
- **Components:** The smallest possible division of matter required (or sometimes chosen) to describe a given phase.
- **Constituents:** The species a phase is made up from. In the case of phases with more than one sublattice, they will determine the composition dependence of the properties of the phase and can reflect additional internal degrees of freedom.
- **Species:** Are the collection of all constituents for the phases in a given system and can be elements, molecular aggregates, charged or neutral.

Status of phases

Entered / <u>Selected</u>

The phase participates in the equilibrium calculation. Default for most phases.

Suspended / De-selected

The phase does not participate in the equilibrium calculation. A suspended or dormant phase can however be used as a reference phase for G.

Dormant

The phase does not participate in the equilibrium calculation, but the driving force for precipitating the phase is calculated.

Fixed

It is a requirement that the phase is stable in the equilibrium together with at least one more phase.

Ex. Calculate the liquidus temperature of a metallic alloy. Set the liquid as **fixed** to 1 mole (if the system size is 1 mole)

Single Equilibrium, Example 2

 γ - γ' phase equilibrium in Ni Superalloy CMSX-2 at 850°C:

• Ni-12.21Al-1.25Ti-9.22Cr-5.08Co-1.99Ta-2.61W at.%

at%	Al	Ti	Cr	Ni	Co	Та	W
Measured	3.1	0.6	25.5	59.6	8.6	0.1	2.5
Matrix phase							
Calculated y	?	?	?	?	?	?	?
phase							
Measured	16.7	3.0	2.4	70.5	3.2	3.0	2.4
Precipitates							
Calculated y'	?	?	?	?	?	?	?
phase							

Which FCC_L12 is the gamma prime?

Blavette, D. et al. "AN ATOM-PROBE STUDY OF SOME FINE-SCALE MICROSTRUCTURAL FEATURES IN Ni-BASED SINGLE CRYSTAL SUPERALLOYS." *Superalloys, 1988 305-314.*

Single Equilibrium, Example 2

 γ - γ' phase equilibrium in Ni Superalloy CMSX-2 at 850°C:

• Ni-12.21Al-1.25Ti-9.22Cr-5.08Co-1.99Ta-2.61W at.%

at%	Al	Ti	Cr	Ni	Co	Та	W
Measured	3.1	0.6	25.5	59.6	8.6	0.1	2.5
Matrix phase							
Calculated y	4.3	0.2	21.6	59.5	10.4	0.2	3.9
phase							
Measured	16.7	3.0	2.4	70.5	3.2	3.0	2.4
Precipitates							
Calculated y'	15.1	1.7	4.7	70.6	3.1	2.7	2.1
phase							

Which FCC_L12 is the gamma prime? -- the second in the table, x(Ni)=0.706 (close to 0.75, Ni₃Al)

Blavette, D. et al. "AN ATOM-PROBE STUDY OF SOME FINE-SCALE MICROSTRUCTURAL FEATURES IN Ni-BASED SINGLE CRYSTAL SUPERALLOYS." *Superalloys, 1988 305-314.*

Schedule

Thermo-Calc Day 1

9:00	S-Eq 1: Stainless steel 2205.
------	-------------------------------

- 9:30 Introduction to Thermo-Calc and CALPHAD-based software tools.
- 10:00 S-Eq 2: Ni superalloy CSMX-2.
- 10:25 Q & A
- 10:40 S-Eq 3: Stable and metastable phases in Al-Cu.
- 11:00 Step 1: Ni alloy Nimonic 263.
- 11:25 Step 2: Slag calculation, changing components.
- 11:45 Q & A
- 12:00 Handing out home assignment.

S-Eq = Single-Equilibrium Calculation

Step = One-axis Step Calculation

Questions & Answers

S-Eq 3: Al-Cu Solvus temperatures for stable and meta-stable phases.

Single Equilibrium, Example 3

Single Equilibrium, Example 3

Calculate Al-Cu (Al) solvus temperatures for θ , θ ', θ " (or GPII zones)

At.%	Phase	Temperatures from literature (°C)	Temperatures from calculation
Al-1Cu	Θ''	200 [1957Bet]	?
Al-1.5Cu	Θ΄	400 [1934Mat]	?
Al-1Cu	Θ	450 [1973Hor]	?

 Θ is the stable Al₂Cu phase in the binary phase diagram Al-Cu.

K. Matsuyama, Kinzoku no Kenkyu. 11 (1934) 461-490.
R. H. Beton, Beton, E.C. Rollason, J. Inst. Met. 86 (1957) 77-84.
H. Hori, K. Hirano, J. Jpn. Inst. Met. 37 (1973) 142-148.

Fix phase

Setting a phase status fix with the value of 0 or 1 is a way to identify a point on a phase diagram line in a single-equilibrium calculation. This could be for instance a liquidus or solidus temperature.

Setting a phase fix takes up one degree of freedom, i.e. it is equal to setting a condition. The fix condition is often a more difficult condition to find the equilibrium for than just using conditions on the standard state variables, T, N, W(..) etc. It can be very dependent on start values.

Because of this it is recommended to use a start value when setting phases fix. This is achieved in Graphical mode by having two Equilibrium Calculations in sequence, <u>see next slide</u>.

The fix status can also be used for one-axis step calculations.

Single Equilibrium, Example 3

Calculate Al-Cu (Al) solvus temperatures for θ , θ ', θ " (or GPII zones)

At.%	Phase	Temperatures from literature (°C)	Temperatures from calculation
Al-1Cu	Θ''	200 [1957Bet]	198.1
Al-1.5Cu	Θ'	400 [1934Mat]	398.2
Al-1Cu	Θ	450 [1973Hor]	446.5

K. Matsuyama, Kinzoku no Kenkyu. 11 (1934) 461-490.
R. H. Beton, Beton, E.C. Rollason, J. Inst. Met. 86 (1957) 77-84.
H. Hori, K. Hirano, J. Jpn. Inst. Met. 37 (1973) 142-148.

Things to think about before making a calculation (or before evaluating the result)

What is the most suitable database?

Should I suspend any phases?

Do I need to append any databases? (i.e. for the gas phase)?

Overall how does my calculation relate to equilibrium and what is happening in the 'real world'?

One Axis Step Calculations (Property Diagrams)

Property diagrams

- Vary one thermodynamic state variable (e.g. temperature or composition of one alloying element).
- Plot or tabulate a dependent property as a function of the variable (e.g. phase fractions, phase compositions, enthalpy.
- □ Often referred to as "One axis" or "Step" calculations.

Property diagram

Step in one variable

Ex: Calculate the phase fractions as function of temperature for an 18-8 stainless steel

Phase fractions as a function of temperature

Examples of variables in property diagrams

- □ Thermodynamic variables:
 - Activities
 - Enthalpies
 - Heat Capacities (C_p)
- **□** Equilibrium fraction of phases
- Equilibrium composition in one or many phases
- Density and thermal expansivity
- □ Thermal or electric conductivity/resistivity
- □ Viscosity or surface tension of the liquid phase
- □ Yield strength
- User defined functions

Step 1: Ni alloy Nimonic 263. Step in temperature.
Property diagrams, Step example 1

Ni-based superalloy Nimonic 263:
Ni -19.5Cr -20Co -2.1Ti - 0.4Al (wt-%)

Eta phase forming at expense of γ^\prime after 1000h at 850C

Authors report after 14000 hours at 840C, all γ^\prime transforms to eta

Zhao, J-C., et al., "Phase precipitation and phase stability in Nimonic 263." *Metallurgical and Materials Transactions A* 32.6 (2001): 1271-1282.

Property diagrams, Step example 1

Ni-based superalloy Nimonic 263:
Ni-19.5Cr-20Co-2.1Ti-0.4Al (wt-%)

What temperature does gamma prime form?

What temperature does gamma prime form when eta is suspended?

Step 2: Slag calculation. Changing components for simpler set-up.

SLAG (or flux) step example 2 – define new components

Calculate a property diagram for a simplified flux: 40 wt-% CaO 20 wt-% SiO₂ 5 wt-% CaF₂ 15 wt-% MgO 20 wt-% Al₂O₃

Use this composition and step in temperature. Plot mole fraction of phases in one diagram, composition of the liquid phase in another.

SLAG (or flux) step example 2 – define new components

2022.03.14.14.22.06

TCOX11 : CAO, SIO2, O, CAF2, MGO, AL2O3

Pressure [Pa] = 100000.0, System size [mol] = 1.0, Activity of O2 in GAS = 0.2, Mass percent SIO2 = 20.0, Mass percent CAF2 = 5.0, Mass percent MGO = 15.0, Mass percent AL2O3 = 20.0

Questions & Answers

Home Assignment 1

Home assignment – Fixing phase

Material: Tool Steel

- 1) Fe 4Cr 8Mo 2V 0.3Mn 0.3Si 1C (wt-%)
 - a) Calculate the liquidus temperature for the steel.
 - b) How does the liquidus temperature change with carbon content?

More than one way to solve!

Download

https://download.thermocalc.com/courses/TC-Day2/