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Diffusion Module (DICTRA)
Schedule

Day 2

9:00 Home assignment 1
9:10 Example - Solidification using Scheil 
9:30 Example - Scheil with real back-diffusion in the solid.
9:50 Example – DICTRA solidification (Moving phase boundary)
10:30 Q&A
10:45 Diffusion theory and numerics
11:15 Example – Homogenisation model: Diffusion couple
11:45 Q&A
12:00 Home assignment 2

Today’s download: 

https://download.thermocalc.com/courses/DICTRA/DICT-Day2/



Home assignment 1



Try to make the Al-Sc simulation we just performed 
more realistic by adding the cooling from single-phase
FCC at 600 °C to 450 °C.
Let’s assume this cooling takes 2 seconds.

Does this change how much the phase interface has 
moved after 1 hour? 

1) You have to change the setting to non-isothermal.
2) Also consider how you can compare the two 

results after time=3600 s.

Home assignment 1: Particle growth

4

Al – 0.2 wt-% Sc



1) You have to change the setting to non-isothermal.
2) Also consider how you can compare the two 

results after time=3600 s.

Clone the isothermal Project tree in order to keep the 
results also from the old simulation.

Home assignment 1: Particle growth

5

Al – 0.2 wt-% Sc

IsothermalCooling



Solidification –
different methods



Equilibrium methods (lever-rule)
Solute diffusion is rapid, i.e. complete solute back diffusion → uniform composition in both solids and liquid.

Non equilibrium methods (SCHEIL)
Negligible diffusion in solids, i.e. no solute back diffusion → solids retain same composi on through 
solidification.

Partial equilibrium methods/ Fast diffusing species
Complete interstitial but negligible substitutional solute back diffusion. No diffusion calculation – equilibration 
of chemical potential for fast diffusing species.

Back diffusion calculated in the Primary Phase
Scheil with a simultaneous diffusion calculation in the primary phase. Requires additional kinetic database 
and takes dendrite spacing and cooling rate into account.

Scheil with Solute Trapping
Intended for simulation of very fast cooling, e.g. during Additive Manufacturing. Requires assumption about 
scanning speed and angle.

Moving phase boundary methods (DICTRA)
Full integration of thermodynamics and kinetics in all phases. Requires additional kinetic database and takes 
dendrite spacing and cooling rate into account.

Solidification simulations



Scheil model

• Assumptions in traditional Scheil:

 Fast diffusion in liquid  homogenous liquid

 No diffusion in solid phases  segregations in the solid
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Scheil with back diffusion

• Introduced in Thermo-Calc four years ago.

• It is a real diffusion method where diffusion is simulated in the majority 
solid phase. Both Thermodynamic and Mobility data is needed.

• This is unlike “Scheil with partial equilibrium” where fast diffusing 
elements (C, N) are allowed to “move” freely in the solid phases during 
solidification. In this case the changing concentration of C or N is due to 
conditions in chemical potential but no diffusion simulation takes place.

• In this example: Use this method and compare with standard Scheil for an
Al-alloy AA5005, with the simplified composition Al – 0.8% Mg – 0.7% Fe –
0.3% Si (wt-%). Perform two calculations, one at a low and one at a high 
cooling rate.



Scheil and Scheil with back diffusion

Secondary dendrite arm spacing l can be 
calculated with an empirical formula:

l  = c * CR-n 

where CR is the cooling rate in K/s. 

Scheil Scheil w. back diffusion, 
slow cooling, 0.01K/s.



Moving Phase boundary 
Example 

- Solidification



Solidification simulation using DICTRA

Assumptions:

• Assumption that equilibrium holds locally at the phase 
interface.

• Assumption regarding the geometry and size of the 
system, e.g. the interdendritic spacing.

• Assumption regarding the cooling rate.

However,

• Full consideration of diffusion in both the liquid and
solid phases.



Example - Solidification

Solidification of Al-alloy 5005 using DICTRA. 

l/2

Composition:
Al – bal.
Mg– 0.8 %
Fe – 0.7 %
Si – 0.3 % 
(weight-%, )

• Secondary dendrite arm spacing – use formula from 
”Scheil with back diffusion” (see next slide).

• Cooling rate approximately 0.01 ºC/s.



Example - Solidification
Cooling rate: 0.01ºC per second. Start at 653ºC, just above TLIQ

114.27 μm

Liquid

LiquidFcc

LiquidLiquidFcc
υ

Fcc

Fcc

Use l/2 as the region size, take
l from “Scheil with back diffusion”-
calculation at the same cooling rate.

Scheil calculation shows these are 
the phases to consider -
in this case the Equilibrium step is 
not a good predictor. 

AL13FE4



Example - Solidification
Cooling rate: 0.01ºC per second. Start above TLIQ

FCC_A1

AL13FE4

LIQUID





Diffusion theory 
and numerics



Multicomponent Diffusion theory

Derivation of expression for the flux Jk [mol/m2s] 
from first principles

Combine the flux expression with mass-balance,
equation of continuity, to simulate the evolution
of a concentration field ck(z,t) [mol/m3]

Fick’s second law



Different types of diffusion coefficients

Consider a system with C components, we have
– C*(C-1) diffusion coefficients in lattice-fixed frame of 

reference, usually called
• Individual diffusion coefficients
• Intrinsic diffusion coefficients

– (C-1)*(C-1) diffusion coefficients in number-fixed frame 
of reference, called

• Chemical diffusion coefficients
• Inter-diffusion coefficients
• Exchange-diffusion coefficients

– C tracer diffusion coefficients, called self diffusion 
coefficients if a pure element.

They are all functions of temperature and 
composition! They are not independent!



Atomistic treatment of diffusion

For crystalline phases it is generally accepted that diffusion occurs mainly 
through a vacancy exchange mechanism, i.e. by atoms jumping to 
adjacent vacant lattice sites.

Assuming that there is a random distribution of vacant sites and that the
number of vacancies is everywhere adjusted to equilibrium, it is possible
to derive an expression for the flux of k in a lattice-fixed frame
of reference. 

See, for example,
Stearn, Eyring, J Phys Chem 44(1940)955
Bardeen, Phys Rev 76(1949)1403



• As said the dominating diffusion mechanism 
is an atom jumping to an adjacent vacant 
lattice site.

• The probability for thermally activated 
”jumps” of an atom to neighboring vacant 
site is given by

where G is the change in Gibbs energy 
caused by jump and kB is Boltzmann’s 
constant.

exp( / )Bp G k T= 

Expressions for the flux



If there is a driving force G will be different in
the two directions.





z
GG

z
GG

VaB
B

VaB
B




=




=

)(

2

1

)(

2

1

*

*






z

VaB





)(

*
BG





Assume a random mixture of mole of 
vacancies in thermal equilibrium, i.e. 

The quantity may formally be 
interpreted as the chemical potential of 
vacancies . However, as vacancies are 
not conserved, this concept does not have a 
clear physical meaning.

In a random mixture the probability that a 
site is vacant is i.e. the fraction of vacant 
lattice sites. 
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Net flux of atoms (in lattice-fixed frame):
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Net flux of atoms in the limit of low
Driving forces:

*
2 1

exp B B B
B B Va B B

G
J c y c M

RT RT z z

  
   

   =     

BM



For interstitial B the fraction of vacancies is
usually large and known from composition
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Fick’s equations for n components



Using matrix-vector notation Fick’s equation reads:



Example:  Fe-Si-C system

Flux of carbon:

Flux of silicon:



Fick’s second equation

Combining the continuity equation with Fick’s equation 
gives us the fundamental differential equation of diffusion, 
sometimes referred to as Fick’s second equation.   



Frames of reference

z
c1

c2

0

c*

Matano plane at z=0

Determining D with diffusion couple technique (Boltzmann-Matano analysis):

Origin of z
determined by 



Frames of reference

Kirkendall and Smigelskas (1947):

Cu-Zn alloyCu

Mo wires

Smigelskas, Kirkendall, Trans AIME 171(1947)130

Cu-Zn Cu Cu-Zn Cu
Cu

Zn

DZn > DCu

v

t = 0 t > 0
Cu-Zn Cu

Inert 
markers

Matano
plane

Annihilation of
lattice sites

Creation of
lattice sites

Shift between
Lattice-fixed
and 
Volume-fixed
frames of
references



Frames of reference

Lattice-fixed frame of reference:
- Defined by the inert markers, or that

there is no net flow of lattice sites.

Volume-fixed frame of reference:
- Defined in such a way that there is no

net flow of volume.

DICTRA frame of reference:
-Volume-fixed frame, however only 

the substitutional components are
assumed to contribute to the volume.



Frames of reference

The equation for the velocity of the markers in the diffusion zone relative
to the ends of the diffusion couple, in the Kirkendall experiment is:

This is the velocity with which the two frames move relative to each other.

We may use this equation in order to transfer the fluxes from the volume-
fixed to the lattice-fixed frame, or vice versa: 



Phenomenological equations

They are called phenomenological since they stem from no model, but 
from experimental observations.

For single phase simulations it is possible to perform non-isothermal 
simulations*.

If we choose to consider an isothermal, isobaric and isopotential system
we have:

* Höglund, Ågren, J Phase Equil Diffusion 31(2010)212



Identification

Assuming that the vacancy exchange mechanism is predominant, and 
by comparing to the expression derived earlier under this assumption, 
we may identify:

We have now established a relation between M and L.



Transformation to a volume-fixed frame

or,

where,



Transformation to concentration gradients

Applying the chain-rule of derivation on the previous equation:

Or equally if the unreduced diffusivities, Dkj are introduced:

where,



Independent set of driving forces
There is a relation between the n concentration gradients, and it’s
possible to eliminate one of them:

and thus, the flux is now expressed:

we may identify:

and finally obtain:

Andersson, Ågren, J Appl Phys 72(1992)1350



Summary of steps taken when transforming 
from M’s to D’s

kM kiL

'
kiL n

kjD

n
kj

i Dkj
i D

kjD

Identification

Concentration gradients

Independent set of driving forces

Intrinsic diffusion coefficients

Interdiffusion coefficients

Concentration gradients
Independent set of driving forces

Volume-fixed frame of reference



Combined thermodynamic and mobility databases



Numerical models 
in DICTRA



Models
Classic model Homogenization model
(including dispersed (Also handles
system model) moving phase boundary

simulations)

FEM (finite element method) FVM (finite volume method)

Computationally efficient Robust

Sensitive to starting values Sensitive to grid point 
spacing

Crusius, Inden, Knoop, Höglund, Ågren Z Metallkd 83(1992)9 Larsson, Engström, Acta Mater 54(2006)2431
Engström, Höglund, Ågren, Met Mat Trans A 25A(1994)1127 Larsson, Höglund, Calphad 33(2009)495

Larsson, Reed, Acta Mater 56(2008)3754
Larsson, Calphad 47(2014)1



Models

Classic model Homogenization model

Local equilibrium Local equilibrium

Sharp (zero width) Finite width

Velocity obtained by solving set Velocity from explicit 
of flux balance equations expression

Treatment of the interface



Defaults

One phase simulations:
Classic model

Moving phase boundary simulations: 
Classic model

Cell simulations:
Classic model

Multiphase simulations (more than one phase in any region):
Homogenization model 



Restrictions

Only classic model possible
Simulations involving surface energy contributions

Only homogenization model possible
Simulations with a moving boundary and where at least one
region contain multiple phases.

Choosing Model:
In general, try the classic model first, since it is computationally
more efficient



Diffusion theory

The Role of Diffusion in Materials –
A Tutorial.

This very useful document by Prof. 
John Ågren was included in
the download for Day 1 as pdf.
It is also available on our webpage.

Chapter 2 in this guide has a 
simpler take on the multi-
component diffusion than the 
slides we’ve just gone through. 



Homogenization Model



Homogenization model

Flux between slices ”n-1” and ”n”Equilibrium calculation
for each slice

Phase fractions
Phase compositions
Chemical potentials
Mobilities

”Effective” [Mkxk] from combining rules

This approach allow us to account for diffusion in more than one phase

Larsson, Engström, Acta Mater 54(2006)2431
Larsson, Höglund, Calphad 33(2009)495



Calculating effective [Mkxk]

Combining rules are frequently used for determining an 
“effective” transport property in a multi-phase mixture, from:

1) the transport properties in the individual phases 
2) the fraction of phases
3) and sometimes also from their geometrical 

distribution.

Exact knowledge of the geometrical distribution is rarely 
known for a real case and it may be useful to study limiting 
cases or bounds.
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Hashin-Shtrikman bounds
More narrow bounds can be obtained by assuming the 
compound is in a statistical sense, isotropic and homogeneous. 
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Hashin, Shtrikman, J Appl Phys 33(1962)3125
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Percolation
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In reality one cannot expect that the same phase is continuous 
throughout the whole interval.

For practical 
calculations one 
could use e.g. the 
upper bound below a 
certain volume 
fraction of the low 
mobility phase and 
the lower bound 
above the same 
volume fraction.
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Homogenization functions in DICTRA
1.   General lower Hashin-Shtrikman bound
2.   General upper Hashin-Shtrikman bound
3.   Hashin-Shtrikman bound with prescribed matrix phase
4.   Hashin-Shtrikman bound with majority phase as matrix phase
5.   Rule of mixtures (upper Wiener bound)
6.   Inverse rule of mixtures (lower Wiener bound)
7.   Labyrinth factor f with prescribed matrix phase
8.   Labyrinth factor f**2 with prescribed matrix phase
9.   General lower Hashin-Shtrikman bound with excluded phase(s)
10. General upper Hashin-Shtrikman bound with excluded phase(s)
11. Hashin-Shtrikman bound with prescribed matrix phase & excluded phase(s)
12. Hashin-Shtrikman bound with majority phase as matrix & excluded phase(s)
13. Rule of mixtures (upper Wiener bound) with excluded phase(s)
14. Inverse rule of mixtures (lower Wiener bound) with excluded phase(s)
 Color red = available in Graphical mode
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Simulation of CVD process



 + 

Deposition of NiAl on Ni-base alloy by CVD
Domain is growing during the simulation

Micrograph and experimental data from Yu et al Mater Sci Eng A 394(2005)43

Al

Co

Ni

Cr



Homogenization Model
Example- fcc+bcc/fcc+bcc 

diffusion couple



Example: Fe-Cr-Ni diffusion couple

+  /   + 

 Homogenization model
 A single region containing both BCC (ferrite) and FCC (austenite)
 Enter the overall composition as the ”matrix” composition
 Choice of ”matrix” phase does not matter
 Lower Hashin-Shtrikman homogenization function
 Initially a step profile, composition in wt-%

24.3 Cr  6.9 Ni     /     40 Cr  29.4 Ni

1100C,  100 h
3 mm



Example: Fe-Cr-Ni diffusion couple

+  /  /  + 

- profile

 matrix  matrix
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Home assignment 2



Start with a Classic Scheil simulation, with 
carbon as a fast diffusing element. 

Then use the result of the Scheil as start 
composition in the homogenisation 
simulation. Use default settings.

Secondary dendrite arm spacing: 200 m.
Temperature 1120 oC.
Time for homogenisation: 72 hours.

Task: Check how the concentration 
profiles for Ni and Cr change over time.

Compare with exp. data: Fuchs_1120.exp

Home assignment 2: Solidification & Homogenisation

65

CrNi-steel: Fe(bal.) – 1.9 Ni – 0.95 Cr – 0.65 Mn – 0.4 C (wt-%) 

Use this template.


